Algebraic Stacks and Applications
代数栈和应用
基本信息
- 批准号:0758391
- 负责人:
- 金额:$ 12.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-15 至 2010-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI proposes to continue his work on stacks and their applications to arithmetic geometry, algebraic geometry, and noncommutative algebra. One project involves studying the connection between the Hasse principle for geometrically rational varieties over global fields and the period-index problem for Brauer groups of function fields. This is analogous to the connection between Artin's conjecture on the finiteness of the Brauer group for schemes proper over the integers and the Tate-Shafarevich conjecture, and builds on earlier work by the PI on the moduli of twisted sheaves. A second project will continue the joint work carried out by the PI and Kovács on higher-dimensional generalizations of the Shafarevich conjecture on non-isotrivial families of curves. Crucial to this project will be a greater understanding of stacks parametrizing morphisms between stacks, whose systematic study was only recently begun. A third project aims to deepen the understanding of stacks and their intrinsic geometry. The PI and his collaborators will study the nature of birational modifications and analytification of stacks, and the categorical information content of stacks. The ultimate goal of the proposed research is to broaden the applications of algebro-geometric and stack-theoretic methods in pure algebra and related fields.Broadly speaking, algebraic geometry is the study of the geometry associated to algebraic objects. One of the most fruitful historical examples is the equation for a circle; the quadratic nature of the equation is closely related to the fact that a line generally intersects a circle in two points. Over the last several millennia, mathematicians have come to understand that the connections between algebra and geometry run far deeper than one might imagine, and this has led to the gradual encroachment of geometric methods into far-flung areas of pure algebra and a profound unification of several seemingly-different subjects. Each new advance in algebraic geometry ultimately finds applications to other areas of mathematics; several abstract areas of the field have turned out to be very computer-friendly, and modern cryptography would be impossible without algebraic geometry. The theory of stacks is relatively young, but it has been the focus of recent attention and is rapidly maturing. The PI's research will be directed toward applying the theory of stacks to a wide range of problems in algebra and geometry, bringing new tools to the geometric analysis of algebraic problems.
PI建议继续他在堆栈及其在算术几何、代数几何和非交换代数中的应用方面的工作。其中一个项目是研究全局域上几何有理变异的Hasse原理与函数域Brauer群的周期指数问题之间的联系。这类似于Artin关于整数上固有方案的Brauer群的有限性的猜想和Tate-Shafarevich猜想之间的联系,并建立在PI关于扭束模的早期工作的基础上。第二个项目将继续由PI和Kovács共同开展的关于非等平凡曲线族的Shafarevich猜想的高维推广的工作。这个项目的关键是更好地理解堆栈参数化堆栈之间的态射,其系统研究最近才开始。第三个项目旨在加深对堆栈及其内在几何形状的理解。PI和他的合作者将研究摞的两种修改和分析的性质,以及摞的分类信息内容。本研究的最终目标是扩大代数几何和堆栈理论方法在纯代数和相关领域的应用。广义地说,代数几何是研究与代数对象相关的几何。历史上最有成果的例子之一是圆的方程;方程的二次性质与直线通常与圆相交于两点这一事实密切相关。在过去的几千年里,数学家们逐渐认识到代数和几何之间的联系比人们想象的要深刻得多,这导致几何方法逐渐渗透到纯代数的广泛领域,并使几个看似不同的学科得到了深刻的统一。代数几何的每一个新进展最终都能应用到数学的其他领域;该领域的几个抽象领域已经被证明是非常适合计算机使用的,如果没有代数几何,现代密码学是不可能的。堆栈理论相对较年轻,但它已成为最近关注的焦点,并且正在迅速成熟。PI的研究方向是将堆栈理论应用于代数和几何中的广泛问题,为代数问题的几何分析带来新的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Max Lieblich其他文献
Automation of Workplace Lifting Hazard Assessment for Musculoskeletal Injury Prevention
自动化工作场所举升危险评估以预防肌肉骨骼损伤
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.3
- 作者:
J. Spector;Max Lieblich;S. Bao;K. McQuade;Margaret Hughes - 通讯作者:
Margaret Hughes
A Tannakian approach to patching
坦纳克式的修补方法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
B. Haase;D. Krashen;Max Lieblich - 通讯作者:
Max Lieblich
Generators and relations for the etale fundamental group
etale 基本群的生成元和关系
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Max Lieblich;Martin Olsson - 通讯作者:
Martin Olsson
Twisted sheaves and the period-index problem
- DOI:
10.1112/s0010437x07003144 - 发表时间:
2005-11 - 期刊:
- 影响因子:1.8
- 作者:
Max Lieblich - 通讯作者:
Max Lieblich
A Stronger Derived Torelli Theorem for K3 Surfaces
K3曲面的更强导出的托雷利定理
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Max Lieblich;Martin Olsson - 通讯作者:
Martin Olsson
Max Lieblich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Max Lieblich', 18)}}的其他基金
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2151718 - 财政年份:2022
- 资助金额:
$ 12.44万 - 项目类别:
Continuing Grant
Reconstruction Theorems, Brauer Groups, and Algebraic Vision
重构定理、布劳尔群和代数视觉
- 批准号:
1901933 - 财政年份:2019
- 资助金额:
$ 12.44万 - 项目类别:
Continuing Grant
Derived Torelli Theorems, Brauer Degeneration and Universality, and Foundations of Algebraic Vision
导出的托雷利定理、布劳尔退化和普遍性以及代数视觉基础
- 批准号:
1600813 - 财政年份:2016
- 资助金额:
$ 12.44万 - 项目类别:
Continuing Grant
CAREER: the Brauer group in algebraic and formal geometry
职业:代数和形式几何中的布劳尔群
- 批准号:
1056129 - 财政年份:2011
- 资助金额:
$ 12.44万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Datacenter-Aware Local Storage Stacks
职业:数据中心感知的本地存储堆栈
- 批准号:
2340218 - 财政年份:2024
- 资助金额:
$ 12.44万 - 项目类别:
Continuing Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
- 批准号:
2302284 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别:
Standard Grant
Geometry of moduli stacks of Galois representations
伽罗瓦表示的模栈的几何
- 批准号:
2302623 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别:
Standard Grant
Electrically Conductive 2D Metal-Organic Frameworks and Covalent Organic Frameworks Featuring Built-in Alternating pi-Donor/Acceptor Stacks with Efficient Charge Transport Capacity
导电二维金属有机框架和共价有机框架,具有内置交替 pi 供体/受体堆栈,具有高效的电荷传输能力
- 批准号:
2321365 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别:
Standard Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
- 批准号:
2302285 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别:
Standard Grant
Moduli stacks: curves, stable reduction and arithmetic
模数堆栈:曲线、稳定归约和算术
- 批准号:
22KF0205 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别:
Grant-in-Aid for JSPS Fellows
High Durability Solid Oxide Electrolyser Stacks with Enhanced Coated Interconnects and Metal Ion Infiltrated Electrodes - HiDroConnect
具有增强涂层互连和金属离子渗透电极的高耐用性固体氧化物电解槽堆栈 - HiDroConnect
- 批准号:
10080289 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别:
Collaborative R&D
Synthesis and Assembly 2D Heterostructured Hybrid Stacks
合成和组装 2D 异质结构混合堆栈
- 批准号:
2200366 - 财政年份:2022
- 资助金额:
$ 12.44万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: High-performance Network Stacks for the Edge
合作研究:CNS 核心:中:边缘的高性能网络堆栈
- 批准号:
2212098 - 财政年份:2022
- 资助金额:
$ 12.44万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: High-performance Network Stacks for the Edge
合作研究:CNS 核心:中:边缘的高性能网络堆栈
- 批准号:
2212099 - 财政年份:2022
- 资助金额:
$ 12.44万 - 项目类别:
Standard Grant














{{item.name}}会员




