Algorithm-Fused High Performance Damage Detector: Optimal Sensor Distributions

算法融合的高性能损伤检测器:最佳传感器分布

基本信息

  • 批准号:
    1000391
  • 负责人:
  • 金额:
    $ 13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

The project will focus the development of a robust automated approach for identifying damage in structural systems. The research thrusts are: 1) fusion of complementary algorithms and 2) optimal sensor distributions for the fused set. Selection of complementary algorithms involves identification of methods whose sensitivity to damage and to the sources that cloud damage detection differs with damage scenarios and operating conditions. In a first phase the project inspects the fusion of detection filters that operate on residual correlations with filters that work with amplitude dependent residual metrics. The research expects to demonstrate that the optimized fused detector will have a damage detection threshold that, for a fixed probability of false alarm, is significantly better than that of the individual algorithms. Intimately connected with the algorithmic fusion is research on the selection of sensor layouts that are optimal, given the fused interrogation scheme. Following the analytical work the research progresses into an experimental phase where the performance of the fused algorithms is tested on a one quarter scale steel structure that is exposed to the weather and thus subjected to realistic environmental changes.Algorithm fusion has proven fruitful in Automatic Target Recognition and various other areas but a systematic examination in the context of Structural Health Monitoring is first carried out in this project. If successful, this research will not only offer a robust damage detection scheme for applications to civil structures but it will also point to the merit of algorithmic fusion for other objectives such as the localization and the quantification of damage. Educational activities connected with the project include: 1) interactions with Olin College, an undergraduate engineering school of excellence, through introduction of multi-week research activities based on topics from the project 2) involvement with the program Girls Get Connected (GGC), a science and technology outreach for middle school girls in the Boston area and 3) an afternoon of hands-on activities on the Harvard?s Medical School explorations program, which is attended each fall by over 200 middle school students from Cambridge and Boston. The graduate student working on the project will also receive advanced training on the topic of damage detection in civil structures which is of high engineering importance.
该项目将重点开发一种强大的自动化方法来识别结构系统中的损伤。研究的重点是:1)互补算法的融合;2)融合集的最优传感器分布。补充算法的选择涉及识别对损伤和云损伤检测来源的敏感性随损伤场景和操作条件的不同而不同的方法。在第一阶段,该项目检查检测滤波器的融合,这些滤波器对残差相关性进行操作,对依赖于振幅的残差度量进行处理。研究期望证明,在虚警概率固定的情况下,优化后的融合检测器具有明显优于单个算法的损伤检测阈值。与算法融合密切相关的是研究在给定融合询问方案的情况下,如何选择最优的传感器布局。在分析工作之后,研究进展到实验阶段,在四分之一的钢结构上测试融合算法的性能,该结构暴露在天气中,因此受到现实环境变化的影响。算法融合在自动目标识别和其他领域已经被证明是卓有成效的,但在结构健康监测的背景下,本项目首次进行了系统的研究。如果成功的话,这项研究不仅将为土木结构的应用提供一个强大的损伤检测方案,而且还将为其他目标(如损伤的定位和量化)指出算法融合的优点。与该项目相关的教育活动包括:1)与奥林学院(一所优秀的本科工程学院,通过介绍基于项目主题的为期数周的研究活动进行互动;2)参与女孩互联计划(GGC),这是一项针对波士顿地区中学女孩的科技推广活动;3)一个下午在哈佛大学?每年秋天都有来自剑桥和波士顿的200多名中学生参加。从事该项目的研究生还将接受土木结构损伤检测方面的高级培训,这在工程上具有很高的重要性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dionisio Bernal其他文献

A receptance based formulation for modal scaling using mass perturbations
  • DOI:
    10.1016/j.ymssp.2010.08.004
  • 发表时间:
    2011-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dionisio Bernal
  • 通讯作者:
    Dionisio Bernal
Complex eigenvector scaling from mass perturbations
  • DOI:
    10.1016/j.ymssp.2013.10.019
  • 发表时间:
    2014-03-03
  • 期刊:
  • 影响因子:
  • 作者:
    Dionisio Bernal
  • 通讯作者:
    Dionisio Bernal
Fixed-base poles and eigenvectors from transmission zeros
  • DOI:
    10.1016/j.ymssp.2013.10.020
  • 发表时间:
    2014-03-03
  • 期刊:
  • 影响因子:
  • 作者:
    Dionisio Bernal
  • 通讯作者:
    Dionisio Bernal
Sensitivity-based model updating with parameter rejection
基于灵敏度且带有参数剔除的模型修正
  • DOI:
    10.1016/j.apm.2025.116253
  • 发表时间:
    2025-12-01
  • 期刊:
  • 影响因子:
    5.100
  • 作者:
    Martin D. Ulriksen;Dionisio Bernal
  • 通讯作者:
    Dionisio Bernal
Uniqueness in time limited input reconstruction
时间受限输入重建中的唯一性
  • DOI:
    10.1016/j.ymssp.2022.109900
  • 发表时间:
    2023-03-15
  • 期刊:
  • 影响因子:
    8.900
  • 作者:
    Dionisio Bernal;Martin D. Ulriksen
  • 通讯作者:
    Martin D. Ulriksen

Dionisio Bernal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dionisio Bernal', 18)}}的其他基金

Monitoring the Health of Structural Systems from the Geometry of Sensor Traces
从传感器迹线的几何形状监测结构系统的健康状况
  • 批准号:
    1634277
  • 财政年份:
    2016
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
NEESR: Next Generation Dissipation Guidelines for New and Existing Structures using the NEES Database
NEESR:使用 NEES 数据库的新结构和现有结构的下一代耗散指南
  • 批准号:
    1134997
  • 财政年份:
    2011
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Instability in Multistory Buildings Subjected to Earthquake
多层建筑在地震中的不稳定
  • 批准号:
    9024720
  • 财政年份:
    1991
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
A Spectral Approach to the Dynamic Instability Analysis in Earthquake Resistant Design
抗震设计中动态失稳分析的谱法
  • 批准号:
    8708707
  • 财政年份:
    1987
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant

相似国自然基金

果蝇中Fused/Su(dx)复合物对Hedgehog信号进行严谨性调控的机制研究
  • 批准号:
    31571506
  • 批准年份:
    2015
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Bridging Research & Education in Delineating Fatigue Performance & Damage Mechanisms in Metal Fused Filament Fabricated Inconel 718
职业:桥梁研究
  • 批准号:
    2338178
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Fused-lassoによる広島・長崎の被爆に関する時空間リスク推定モデルの開発
使用 Fused-lasso 开发广岛和长崎原子弹爆炸时空风险评估模型
  • 批准号:
    23K20376
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Taming N-Fused Saturated Bicycles for Discovery Chemistry and Scale-Up
驯服 N 熔合饱和自行车以实现化学发现和放大
  • 批准号:
    2891677
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Studentship
ERI: Fused Filament Fabrication of Thermoplastic-Composite Molds Embedded with Heating Wires for Energy-Efficient Production of Thermoset Composites
ERI:嵌入加热丝的热塑性复合材料模具的熔丝制造,用于热固性复合材料的节能生产
  • 批准号:
    2301925
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Supramolecular Discrete Excimers Based on Fused-Polycyclic pi-Systems for Optoelectronic Application
基于稠合多环π系统的超分子离散准分子光电应用
  • 批准号:
    23KF0062
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Perceptual and Physical Evaluations of Depth-Fused 3-D by See-Through Aerial Display
通过透视空中显示进行深度融合 3D 的感知和物理评估
  • 批准号:
    23K20009
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Fused Filament Fabrication of Porous PEEK and PEKK Spinal Cages: Which 3D Printing Conditions Control Static and Fatigue Strength?
多孔 PEEK 和 PEKK 脊柱笼的熔丝制造:哪种 3D 打印条件可以控制静电强度和疲劳强度?
  • 批准号:
    2326537
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Research on enantioselective parallel total syntheses of antitumor polycyclic natural products with all-carbon quaternary stereogenic centers at multiple fused rings
多稠环全碳季立体中心的抗肿瘤多环天然产物的对映选择性平行全合成研究
  • 批准号:
    22H02087
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Material Extrusion is the fundamental idea behind Fused Deposition Modeling, the most widespread Additive Manufacturing (AM) method
材料挤出是熔融沉积建模(最广泛使用的增材制造 (AM) 方法)背后的基本理念
  • 批准号:
    2739019
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Studentship
Sentinel: RNA phage Qbeta displayed SARS-CoV-2 epitopes fused with Nanotag as a biosensor toolkit
Sentinel:RNA 噬菌体 Qbeta 展示与 Nanotag 融合的 SARS-CoV-2 表位作为生物传感器工具包
  • 批准号:
    2206945
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了