Geometry of Moduli Spaces of Curves and Surfaces
曲线曲面模空间的几何
基本信息
- 批准号:1001344
- 负责人:
- 金额:$ 15.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-15 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator plans to study geometry of moduli spaces of stable curves of Deligne, Knudsen, and Mumford and its higher dimensional analogues, namely the moduli spaces of stable surfaces introduced by Kollar, Shepherd-Barron, and Alexeev. The first goal is to uncover birational geometry of the compact moduli space of algebraic curves. The main conjecture is inspired by Mirror Symmetry from physics and classical algebraic geometry of linear series. It describes the cone of effective divisors and (some part of) the variation of birational contractions of the moduli space of stable rational curves in terms of compactified Jacobians of reducible curves of high genus. The second goal is to develop new methods of explicitly describing the moduli spaces of stable canonically polarized surfaces and to apply these methods in several classical situations.Algebraic geometry studies algebraic varieties: shapes defined by systems of polynomial equations. Algebraic varieties have discrete characteristics that allow to classify their species: rational curves, Del Pezzo surfaces, Abelian varieties, Calabi-Yau varieties, varieties of general type, etc. Varieties of each type depend on certain continuous parameters (called moduli) and the set of all parameters has a rich structure of the so-called moduli space. One is particularly interested in compact moduli spaces that parametrize varieties with allowed mild degenerations. For example, a hyperbola xy=C on the plane can degenerate to the union of two lines xy=0 when C goes to 0. The principal investigator will study these compact moduli spaces and related problems in algebraic geometry. This centuries-old concept of pure mathematics has rich relationship with physics, and applications to computational algebraic geometry will lead to new algorithms useful in algebraic statistics and mathematical biology.
主要研究者计划研究Deligne,Knudsen和Mumford稳定曲线的模空间的几何及其高维类似物,即Kollar,Shepherd-Barron和Alexeev引入的稳定曲面的模空间。第一个目标是揭示代数曲线的紧模空间的双有理几何。主要猜想是受物理学和线性级数的经典代数几何中镜像对称性的启发。它用高亏格可约曲线的紧化Jacobian描述了稳定有理曲线模空间的有效因子锥和(部分)双有理压缩的变化.第二个目标是开发新的方法明确描述的模空间的稳定规范极化表面和应用这些方法在几个经典的situations. Algebrahem几何研究代数品种:形状定义的系统多项式方程。代数变种具有离散的特征,可以将它们的种类分类:有理曲线,Del Pezzo曲面,Abel变种,Calabi-Yau变种,一般类型的变种等。一个是特别感兴趣的紧模空间参数化品种允许轻度退化。例如,平面上的双曲线xy=C可以退化为两条直线xy=0的并集,当C变为0时。主要研究者将研究这些紧凑的模空间和代数几何中的相关问题。这个有着几百年历史的纯数学概念与物理学有着丰富的联系,将其应用于计算代数几何将导致在代数统计和数学生物学中有用的新算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evgueni Tevelev其他文献
Evgueni Tevelev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evgueni Tevelev', 18)}}的其他基金
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 15.02万 - 项目类别:
Standard Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
- 批准号:
2401387 - 财政年份:2024
- 资助金额:
$ 15.02万 - 项目类别:
Standard Grant
Latin American School of Algebraic Geometry and Applications (ELGA IV)
拉丁美洲代数几何及其应用学院 (ELGA IV)
- 批准号:
1935081 - 财政年份:2019
- 资助金额:
$ 15.02万 - 项目类别:
Standard Grant
SM: Collaborative Proposal: AGNES - Algebraic Geometry Northeastern Series
SM:协作提案:AGNES - 代数几何东北系列
- 批准号:
0963853 - 财政年份:2010
- 资助金额:
$ 15.02万 - 项目类别:
Standard Grant
相似国自然基金
高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
- 批准号:11271070
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 15.02万 - 项目类别:
Research Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
- 批准号:
2401387 - 财政年份:2024
- 资助金额:
$ 15.02万 - 项目类别:
Standard Grant
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
- 批准号:
2304840 - 财政年份:2023
- 资助金额:
$ 15.02万 - 项目类别:
Standard Grant
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 15.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometry and Topology of Moduli Spaces
模空间的几何和拓扑
- 批准号:
RGPIN-2022-04908 - 财政年份:2022
- 资助金额:
$ 15.02万 - 项目类别:
Discovery Grants Program - Individual
Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
- 批准号:
RGPIN-2020-04060 - 财政年份:2022
- 资助金额:
$ 15.02万 - 项目类别:
Discovery Grants Program - Individual
Complex geometry of orbifold pairs and of their moduli spaces; structure, classification and relation to arithmetic geometry
轨道对及其模空间的复杂几何;
- 批准号:
RGPIN-2022-05387 - 财政年份:2022
- 资助金额:
$ 15.02万 - 项目类别:
Discovery Grants Program - Individual
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
- 批准号:
2153059 - 财政年份:2022
- 资助金额:
$ 15.02万 - 项目类别:
Continuing Grant
Geometry of Moduli spaces of Connections and Higgs fields and their Applications
联结模空间和希格斯场的几何及其应用
- 批准号:
22K18669 - 财政年份:2022
- 资助金额:
$ 15.02万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Combinatorics and Geometry of Moduli Spaces
模空间的组合学和几何
- 批准号:
RGPIN-2021-04169 - 财政年份:2022
- 资助金额:
$ 15.02万 - 项目类别:
Discovery Grants Program - Individual