Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
基本信息
- 批准号:EP/Y037162/1
- 负责人:
- 金额:$ 123万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Moduli spaces and enumerative geometry are central themes in algebraic geometry. Moduli spaces describe all geometric objects of a given type. Enumerative invariants are natural characteristic numbers of moduli spaces. They arise from studying the topology of these spaces and are often modeled on urve counting problems: counts of curves in a space subject to geometric constraints. The proposal aims to bring forward a fully-fledged theory of logarithmic enumerative geometry. Logarithmic geometry enriches objects of algebraic geometry with combinatorial data. It connects to traditional algebraic geometry by a process called degeneration. Logarithmic structures have been studied for decades but only recently have methods been developed to understand their combinatorial complexity. This is part of the subject of tropical geometry.The proposed advances in this logarithmic direction are guided by the interactions between the basic objects of enumerative geometry: the moduli space of curves, the space of stable maps, and the Hilbert scheme of embedded curves. The interactions have led to remarkable insights, such as the Gromov-Witten (GW)/Donaldson-Thomas (DT) correspondence, the cohomological field theory structure of GW theory, and numerous beautiful calculations on the moduli space of curves. We propose a new logarithmic GW/DT conjecture, a study of the algebraic structure of logarithmic GW theory using orbifolds, and a new logarithmic intersection theory on the moduli space of curves. These will lead to results in traditional enumerative geometry, such as a proof of the standard GW/DT correspondence for a very large class of Calabi-Yau threefolds. It will also build connections between different themes, such as mirror symmetry and the Hilbert schemes of points on a surface. Finally, it will open an entirely new direction in the study of the moduli space of curves using tropical geometry.
模空间和计数几何是代数几何的中心主题。模空间描述了给定类型的所有几何对象。计数不变量是模空间的自然特征数。它们产生于研究这些空间的拓扑结构,并且通常以Urve计数问题为模型:受几何约束的空间中的曲线的计数。该提案旨在提出一种成熟的对数计数几何理论。对数几何用组合数据丰富了代数几何的对象。它通过一种称为退化的过程连接到传统的代数几何。对数结构已经被研究了几十年,但直到最近才发展出了解其组合复杂性的方法。这是热带几何主题的一部分。在这个对数方向上提出的进展是由计数几何的基本对象之间的相互作用指导的:曲线的模空间、稳定映射空间和嵌入曲线的希尔伯特格式。这些相互作用产生了显著的洞察力,例如Gromov-Witten(GW)/Donaldson-Thomas(DT)对应,GW理论的上同调场理论结构,以及许多关于曲线模空间的漂亮计算。我们提出了一个新的对数GW/DT猜想,并利用奥比诺兹研究了对数GW理论的代数结构,以及曲线的模空间上的一个新的对数交理论。这些结果将导致传统的计数几何中的结果,例如证明了非常大的一类Calabi-Yau三重数的标准GW/DT对应。它还将在不同的主题之间建立联系,例如镜像对称和曲面上点的希尔伯特方案。最后,它将为利用热带几何研究曲线的模空间开辟一个全新的方向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dhruv Ranganathan其他文献
Logarithmic tautological rings of the moduli spaces of curves
曲线模空间的对数恒等环
- DOI:
10.1016/j.aim.2025.110291 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:1.500
- 作者:
Rahul Pandharipande;Dhruv Ranganathan;Johannes Schmitt;Pim Spelier - 通讯作者:
Pim Spelier
Tropical compactification and the Gromov–Witten theory of $$\mathbb {P}^1$$
- DOI:
10.1007/s00029-016-0265-7 - 发表时间:
2016-09-03 - 期刊:
- 影响因子:1.200
- 作者:
Renzo Cavalieri;Hannah Markwig;Dhruv Ranganathan - 通讯作者:
Dhruv Ranganathan
Tropical compactification and the Gromov–Witten theory of $$\mathbb {P}^1$$P1
热带致密化和 $$mathbb {P}^1$$P1 的 Gromov-Witten 理论
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
R. Cavalieri;H. Markwig;Dhruv Ranganathan - 通讯作者:
Dhruv Ranganathan
MOTIVIC HILBERT ZETA FUNCTIONS OF CURVES ARE RATIONAL
MOTIVIC HILBERT ZETA 曲线函数是有理数
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0.9
- 作者:
Dori Bejleri;Dhruv Ranganathan;R. Vakil - 通讯作者:
R. Vakil
Hahn analytification and connectivity of higher rank tropical varieties
高级热带品种的哈恩分析和连通性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Tyler Foster;Dhruv Ranganathan - 通讯作者:
Dhruv Ranganathan
Dhruv Ranganathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dhruv Ranganathan', 18)}}的其他基金
Curve counting, moduli, and logarithmic geometry
曲线计数、模数和对数几何
- 批准号:
EP/V051830/1 - 财政年份:2021
- 资助金额:
$ 123万 - 项目类别:
Research Grant
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 123万 - 项目类别:
Fellowship Award
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
- 批准号:
2405191 - 财政年份:2024
- 资助金额:
$ 123万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302262 - 财政年份:2023
- 资助金额:
$ 123万 - 项目类别:
Standard Grant
Refinement and q-deformation of topological recursion and their applications
拓扑递归的细化和q变形及其应用
- 批准号:
23K12968 - 财政年份:2023
- 资助金额:
$ 123万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dualities in Enumerative Algebraic Geometry
枚举代数几何中的对偶性
- 批准号:
2302117 - 财政年份:2023
- 资助金额:
$ 123万 - 项目类别:
Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 123万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302263 - 财政年份:2023
- 资助金额:
$ 123万 - 项目类别:
Standard Grant
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
- 批准号:
23K17298 - 财政年份:2023
- 资助金额:
$ 123万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
- 批准号:
567867-2022 - 财政年份:2022
- 资助金额:
$ 123万 - 项目类别:
Postdoctoral Fellowships
Gravitational Instantons, Mirror Symmetry, and Enumerative Geometry
引力瞬子、镜像对称和枚举几何
- 批准号:
2204109 - 财政年份:2022
- 资助金额:
$ 123万 - 项目类别:
Standard Grant