Geometry of Compact Moduli Spaces

紧模空间的几何

基本信息

  • 批准号:
    0701191
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

The principal investigator plans to study geometry of moduli spaces of stable curves of Deligne, Knudsen, and Mumford and its higher dimensional analogues: moduli spaces of stable pairs introduced by Kollar, Shepherd-Barron, and Alexeev. The deepest results are expected for moduli of Del Pezzo surfaces and certain classes of surfaces of general type, for moduli of stable rational curves, and for their higher-dimensional analogues: compact moduli spaces of hyperplane arrangements. New methods are based on the interaction between Mori theory and tropical algebraic geometry, which assigns to any algebraic variety an object of combinatorial nature, basically a polytope. This polytope (a tropical variety) surprisingly encodes a lot of geometric information about the variety and most importantly about its compactifications. Tropical varieties were originally introduced in the community of computational algebraic geometers who study how to read invariants of algebraic varieties from their equations.It turns out that proposed methods can also be used backwards to advance computational algebraic geometry. In particular, they can be used to find implicit equations of algebraic varieties given parametrically.Algebraic geometry studies algebraic varieties shapes defined by systems of polynomial equations. Algebraic varieties have discrete characteristics that allow to classify their species: rational curves, Del Pezzo surfaces, Abelian varieties, Calabi-Yau varieties, varieties of general type, etc. Varieties of each type depend on certain continuous parameters (called moduli) and the set of all parameters has a rich structure of the so-called moduli space. One is particularly interested in compact moduli spaces that parametrize varieties with allowed mild degenerations.For example, a hyperbola xy=C on the plane can degenerate to the union of two lines xy=0 when C goes to 0. The principal investigator will study these compact moduli spaces and related problems in algebraic geometry. This centuries-old concept of pure mathematics has rich relationship with physics, and applications to computational algebraic geometry will lead to new algorithms useful in algebraic statistics and mathematical biology.
主要研究者计划研究Deligne,Knudsen和Mumford的稳定曲线的模空间的几何及其高维类似物:由Kollar,Shepherd-Barron和Alexeev引入的稳定对的模空间。最深刻的结果预计模的德尔佩佐表面和某些类的表面的一般类型,模的稳定合理的曲线,并为他们的高维类似物:紧凑的模空间的超平面安排。新的方法是基于森理论和热带代数几何之间的相互作用,它分配给任何代数品种的组合性质的对象,基本上是一个多面体。这个多面体(一个热带变种)令人惊讶地编码了很多关于这个变种的几何信息,最重要的是关于它的紧化。热带簇最初是在计算代数几何学家中引入的,他们研究如何从方程中读取代数簇的不变量。事实证明,所提出的方法也可以向后使用,以推进计算代数几何。代数几何学研究由多项式方程组定义的代数簇的形状。代数变种具有离散的特征,可以将它们的种类分类:有理曲线,Del Pezzo曲面,Abel变种,Calabi-Yau变种,一般类型的变种等。人们对紧模空间特别感兴趣,它可以参数化允许轻度退化的簇。例如,平面上的双曲线xy=C可以退化为两条直线xy=0的并,当C变为0时。主要研究者将研究这些紧凑的模空间和代数几何中的相关问题。这个有着几百年历史的纯数学概念与物理学有着丰富的联系,将其应用于计算代数几何将导致在代数统计和数学生物学中有用的新算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Evgueni Tevelev其他文献

Evgueni Tevelev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Evgueni Tevelev', 18)}}的其他基金

Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
  • 批准号:
    2401387
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New Frontiers of Algebraic Geometry
代数几何新领域
  • 批准号:
    2101726
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Latin American School of Algebraic Geometry and Applications (ELGA IV)
拉丁美洲代数几何及其应用学院 (ELGA IV)
  • 批准号:
    1935081
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Moduli Spaces: New Directions
模空间:新方向
  • 批准号:
    1701704
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Moduli spaces of curves and surfaces
曲线和曲面的模空间
  • 批准号:
    1303415
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometry of Moduli Spaces of Curves and Surfaces
曲线曲面模空间的几何
  • 批准号:
    1001344
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SM: Collaborative Proposal: AGNES - Algebraic Geometry Northeastern Series
SM:协作提案:AGNES - 代数几何东北系列
  • 批准号:
    0963853
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards compact and efficient nuclear reactors
迈向紧凑高效的核反应堆
  • 批准号:
    EP/Y022157/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Ultra-compact Sub-mm Heterodyne Focal Plane Array Frontends for Radio Astronomical Observation
用于射电天文观测的超紧凑亚毫米外差焦平面阵列前端
  • 批准号:
    23K20871
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers
开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群
  • 批准号:
    2412341
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
PFI-TT: Compact, Coherent, Hydrophone Array Systems for Real-Time, Instantaneous, Wide-Area, Ocean Acoustic Monitoring from Wind Farms and Other Ocean Platforms
PFI-TT:紧凑、相干、水听器阵列系统,用于风电场和其他海洋平台的实时、瞬时、广域海洋声学监测
  • 批准号:
    2345791
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Novel Microplasmas for Highly Compact and Versatile RF Electronics
事业:用于高度紧凑和多功能射频电子器件的新型微等离子体
  • 批准号:
    2337815
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Compact Optomechanical Seismic Sensors for LIGO
用于 LIGO 的紧凑型光机地震传感器
  • 批准号:
    2426360
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EFFICIENT COMPACT MODULAR THERMAL ENERGY STORAGE SYSTEM
高效紧凑的模块化热能存储系统
  • 批准号:
    10066626
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Auto-compact: AI-powered quality control system for automotive OEMs and Finished Vehicle Logistics (FVL) operators
Auto-compact:面向汽车原始设备制造商和整车物流 (FVL) 运营商的人工智能质量控制系统
  • 批准号:
    83003000
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Innovation Loans
Equivariant Schubert calculus for p-compact groups
p-紧群的等变舒伯特微积分
  • 批准号:
    23K03092
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了