Applications and Combinatorics in Algebraic Geometry

代数几何中的应用和组合学

基本信息

  • 批准号:
    1001615
  • 负责人:
  • 金额:
    $ 23.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

Algebraic geometry is a deep and well-established field within pure mathematics that is increasingly finding applications outside of mathematics. Many applications flow from and contribute to the more computational and combinatorial aspects of algebraic geometry, and this often involves subtle real-number or positivity properties. This project will further the development of applications of algebraic geometry by supporting PI Sottile's work in applications of algebraic geometry and its application-friendly realms of real, combinatorial, and computational algebraic geometry. This include convex algebraic geometry, toric varieties in geometric modeling, quantum Schubert calculus in linear systems theory, tropical geometry, and continued investigation of the Shapiro conjecture. It will also further the growth of applications of algebraic geometry by supporting Sottile's activities as an officer within SIAM and organizer of scientific meetings, and by supporting Sottile's training and mentoring of graduate students, postdocs, and junior collaborators.Algebraic geometry, which is concerned with geometric properties of solutions to algebraic equations, is giving rise to new tools for use in the applications of mathematics. This has been recognised by the Society for Industrial and Applied Mathematics through their creation of an activity group on algebraic geometry. This proposal will support the further development of these new tools for applications from algebraic geometry through the support of research, training, and organizational activities of PI Sottile.
代数几何是纯数学中一个深厚而成熟的领域,它越来越多地在数学之外找到应用。 许多应用程序流和有助于更多的计算和组合方面的代数几何,这往往涉及微妙的实数或积极的性质。 该项目将进一步发展的应用代数几何支持PI Sottile的工作中的应用代数几何和它的应用友好领域的真实的,组合和计算代数几何。这包括凸代数几何,复曲面品种的几何建模,量子舒伯特微积分的线性系统理论,热带几何,并继续调查的夏皮罗猜想。 它也将进一步增长的应用代数几何支持Sottile的活动作为一个官员在SIAM和组织者的科学会议,并通过支持Sottile的培训和指导研究生,博士后,和初级合作者。代数几何,这是关注的几何性质的解决方案,代数方程,正在产生新的工具,用于数学的应用。 这已经认识到社会的工业和应用数学通过他们的创造活动组代数几何。该提案将通过PI Sottile的研究、培训和组织活动的支持,支持进一步开发这些用于代数几何应用的新工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frank Sottile其他文献

Higher convexity for complements of tropical varieties
  • DOI:
    10.1007/s00208-015-1256-2
  • 发表时间:
    2015-07-15
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Mounir Nisse;Frank Sottile
  • 通讯作者:
    Frank Sottile
Lower Bounds in Real Algebraic Geometry and Orientability of Real Toric Varieties
  • DOI:
    10.1007/s00454-013-9498-9
  • 发表时间:
    2013-04-03
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Evgenia Soprunova;Frank Sottile
  • 通讯作者:
    Frank Sottile
A graduate student’s view of the international congress of mathematicians
  • DOI:
    10.1007/bf03025895
  • 发表时间:
    2009-01-13
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Frank Sottile
  • 通讯作者:
    Frank Sottile
Orbitopes
轨道位
Cofree Compositions of Coalgebras
  • DOI:
    10.1007/s00026-012-0170-5
  • 发表时间:
    2012-11-21
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Stefan Forcey;Aaron Lauve;Frank Sottile
  • 通讯作者:
    Frank Sottile

Frank Sottile的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frank Sottile', 18)}}的其他基金

Conference: Texas Algebraic Geometry Symposium (TAGS) 2024-2026
会议:德克萨斯代数几何研讨会 (TAGS) 2024-2026
  • 批准号:
    2349244
  • 财政年份:
    2024
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Continuing Grant
Combinatorial Algebraic Geometry for Spectral Theory and Galois Groups
谱论和伽罗瓦群的组合代数几何
  • 批准号:
    2201005
  • 财政年份:
    2022
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Standard Grant
Combinatorial and Real Algebraic Geometry
组合和实代数几何
  • 批准号:
    1501370
  • 财政年份:
    2015
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Continuing Grant
Cluster Computing for Mathematical Sciences at Texas A&M University
德克萨斯 A 数学科学集群计算
  • 批准号:
    0922866
  • 财政年份:
    2009
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Standard Grant
Numerical real algebraic geometry
数值实代数几何
  • 批准号:
    0915211
  • 财政年份:
    2009
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Standard Grant
US Participation in Workshop: Enumeration and Bounds in Real Algebraic Geometry
美国参加研讨会:实代数几何中的枚举和界限
  • 批准号:
    0800253
  • 财政年份:
    2008
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Standard Grant
Summer School on Applicable Algebraic Geometry: Additional Funding
适用代数几何暑期学校:额外资助
  • 批准号:
    0704355
  • 财政年份:
    2007
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Standard Grant
Applicable Algebraic Geometry: Real Solutions, Applications, and Combinatorics
适用的代数几何:实数解、应用和组合学
  • 批准号:
    0701050
  • 财政年份:
    2007
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Continuing Grant
Workshop on Real Algebraic Geometry in Geometric Modeling
几何建模中的实代数几何研讨会
  • 批准号:
    0412858
  • 财政年份:
    2004
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Standard Grant
CAREER: Computation, Combinatorics, and Reality in Algebraic Geometry, with Applications
职业:代数几何中的计算、组合学和现实及其应用
  • 批准号:
    0538734
  • 财政年份:
    2004
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Standard Grant

相似海外基金

Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
  • 批准号:
    RGPIN-2015-05787
  • 财政年份:
    2019
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
  • 批准号:
    RGPIN-2015-05787
  • 财政年份:
    2018
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic Combinatorics of Symmetric Functions and its Applications to Representation Theory and Enumerative Combinatorics
对称函数的代数组合及其在表示论和枚举组合学中的应用
  • 批准号:
    18K03208
  • 财政年份:
    2018
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
  • 批准号:
    RGPIN-2015-05787
  • 财政年份:
    2017
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of non-commutative symmetric functions to algebraic combinatorics
非交换对称函数在代数组合中的应用
  • 批准号:
    261951-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
  • 批准号:
    RGPIN-2015-05787
  • 财政年份:
    2016
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of non-commutative symmetric functions to algebraic combinatorics
非交换对称函数在代数组合中的应用
  • 批准号:
    261951-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Discovery Grants Program - Individual
Systems of Lines: Applications of Algebraic Combinatorics
线系:代数组合学的应用
  • 批准号:
    1541272
  • 财政年份:
    2015
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Standard Grant
Conference "Algebraic Combinatorics and Applications"
会议“代数组合及其应用”
  • 批准号:
    1539650
  • 财政年份:
    2015
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Standard Grant
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
  • 批准号:
    RGPIN-2015-05787
  • 财政年份:
    2015
  • 资助金额:
    $ 23.54万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了