Combinatorial and Real Algebraic Geometry
组合和实代数几何
基本信息
- 批准号:1501370
- 负责人:
- 金额:$ 34.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algebraic geometry, which is the mathematical study of solutions to systems of polynomial equations, is a core mathematical discipline noted for its theoretical depth and its interactions with other areas of mathematics. Algebraic geometry is also a tool for applications, since physical objects can be described by polynomial equations, and relations between concepts in science and engineering may be modeled by polynomials. Whatever their source, once polynomials enter the picture, the theoretical base, trove of classical examples, and modern computational tools of algebraic geometry may be brought to bear on the problem at hand. This research project aims to strengthen the role of algebraic geometry as a tool for applications, in two ways. First, a major focus will be on developing the interface between algebraic geometry and applications. Second is work on combinatorial aspects of algebraic geometry, for this develops tools and ideas to better understand objects in algebraic geometry with special structure, and these highly structured objects are those that appear most commonly in the interactions between algebraic geometry and other fields, both within mathematics and in the applied sciences. This project will also involve training of students and postdocs, the investigator's outreach activities at the local level through a mathematics circle, and his continued interaction with mathematics in Nigeria. Oftentimes, objects from algebraic geometry that arise in other parts of mathematics or science have strong combinatorial structures (e.g., toric varieties or Grassmannians) or else the application demands real solutions. Consequently, the research in areas of combinatorial and real algebraic geometry in this project will serve both to advance our basic understanding of these topics and to help build a foundation for applications. This project involves research in three topics within algebraic geometry: real toric varieties, tropical geometry, and Schubert calculus. In each of these areas the investigator will work with collaborators and students on projects ranging from developing foundations to understanding key examples to work inspired by problems from applications. Of particular note are the goals of developing a rich and robust theory of irrational toric varieties, understanding the geometry and topology of complements of tropical objects, establishing positivity in type C Schubert calculus via a useful theory of shifted dual equivalence, and understanding Galois groups in the Schubert calculus. This award is jointly funded by the Algebra and Number Theory and Combinatorics programs.
代数几何是对多项式方程组解的数学研究,是一门核心数学学科,以其理论深度及其与其他数学领域的相互作用而闻名。代数几何也是一种应用工具,因为物理对象可以用多项式方程描述,科学和工程中概念之间的关系可以用多项式建模。无论它们的来源是什么,一旦多项式进入画面,理论基础,经典例子的宝藏,以及代数几何的现代计算工具可能会对手头的问题产生影响。这个研究项目的目的是加强作用的代数几何作为一种工具的应用,在两个方面。首先,一个主要的重点将是发展代数几何和应用之间的接口。其次是工作的组合方面的代数几何,为这发展的工具和想法,以更好地了解对象的代数几何与特殊结构,这些高度结构化的对象是那些最常见的互动之间的代数几何和其他领域,无论是在数学和应用科学。该项目还将涉及对学生和博士后的培训,调查员通过数学圈在地方一级的推广活动,以及他与尼日利亚数学界的持续互动。通常,在数学或科学的其他部分中出现的来自代数几何的对象具有强组合结构(例如,复曲面品种或Grassmannians),否则应用需要真实的解决方案。因此,在组合和真实的代数几何领域的研究在这个项目中将有助于既推进我们对这些主题的基本理解,并帮助建立应用的基础。该项目涉及代数几何中的三个主题的研究:真实的复曲面品种,热带几何和舒伯特演算。在每个领域,研究人员将与合作者和学生一起开展项目,从开发基础到理解关键示例,再到受应用问题启发的工作。特别值得注意的是发展一个丰富和强大的理论的非理性环面品种的目标,了解几何和拓扑结构的补充热带物体,建立积极性在C型舒伯特演算通过一个有用的理论转移对偶等价,并了解伽罗瓦集团在舒伯特演算。该奖项是由代数和数论和组合学计划共同资助的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frank Sottile其他文献
Higher convexity for complements of tropical varieties
- DOI:
10.1007/s00208-015-1256-2 - 发表时间:
2015-07-15 - 期刊:
- 影响因子:1.400
- 作者:
Mounir Nisse;Frank Sottile - 通讯作者:
Frank Sottile
Lower Bounds in Real Algebraic Geometry and Orientability of Real Toric Varieties
- DOI:
10.1007/s00454-013-9498-9 - 发表时间:
2013-04-03 - 期刊:
- 影响因子:0.600
- 作者:
Evgenia Soprunova;Frank Sottile - 通讯作者:
Frank Sottile
A graduate student’s view of the international congress of mathematicians
- DOI:
10.1007/bf03025895 - 发表时间:
2009-01-13 - 期刊:
- 影响因子:0.400
- 作者:
Frank Sottile - 通讯作者:
Frank Sottile
Orbitopes
轨道位
- DOI:
10.1112/s002557931100132x - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Raman Sanyal;Frank Sottile;Bernd Sturmfels - 通讯作者:
Bernd Sturmfels
Cofree Compositions of Coalgebras
- DOI:
10.1007/s00026-012-0170-5 - 发表时间:
2012-11-21 - 期刊:
- 影响因子:0.700
- 作者:
Stefan Forcey;Aaron Lauve;Frank Sottile - 通讯作者:
Frank Sottile
Frank Sottile的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frank Sottile', 18)}}的其他基金
Conference: Texas Algebraic Geometry Symposium (TAGS) 2024-2026
会议:德克萨斯代数几何研讨会 (TAGS) 2024-2026
- 批准号:
2349244 - 财政年份:2024
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant
Combinatorial Algebraic Geometry for Spectral Theory and Galois Groups
谱论和伽罗瓦群的组合代数几何
- 批准号:
2201005 - 财政年份:2022
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Applications and Combinatorics in Algebraic Geometry
代数几何中的应用和组合学
- 批准号:
1001615 - 财政年份:2010
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant
Cluster Computing for Mathematical Sciences at Texas A&M University
德克萨斯 A 数学科学集群计算
- 批准号:
0922866 - 财政年份:2009
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
US Participation in Workshop: Enumeration and Bounds in Real Algebraic Geometry
美国参加研讨会:实代数几何中的枚举和界限
- 批准号:
0800253 - 财政年份:2008
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Summer School on Applicable Algebraic Geometry: Additional Funding
适用代数几何暑期学校:额外资助
- 批准号:
0704355 - 财政年份:2007
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Applicable Algebraic Geometry: Real Solutions, Applications, and Combinatorics
适用的代数几何:实数解、应用和组合学
- 批准号:
0701050 - 财政年份:2007
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant
Workshop on Real Algebraic Geometry in Geometric Modeling
几何建模中的实代数几何研讨会
- 批准号:
0412858 - 财政年份:2004
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
CAREER: Computation, Combinatorics, and Reality in Algebraic Geometry, with Applications
职业:代数几何中的计算、组合学和现实及其应用
- 批准号:
0538734 - 财政年份:2004
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
相似国自然基金
Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
- 批准号:30600737
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
- 批准号:60608018
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
MPS-Ascend: The C*-Algebraic Mackey Bijection for Real Reductive Groups
MPS-Ascend:实数约简群的 C*-代数 Mackey 双射
- 批准号:
2213097 - 财政年份:2022
- 资助金额:
$ 34.76万 - 项目类别:
Fellowship Award
Real algebraic geometry and combinatorics
实代数几何和组合数学
- 批准号:
RGPIN-2018-04741 - 财政年份:2022
- 资助金额:
$ 34.76万 - 项目类别:
Discovery Grants Program - Individual
Real algebraic geometry and combinatorics
实代数几何和组合数学
- 批准号:
RGPIN-2018-04741 - 财政年份:2021
- 资助金额:
$ 34.76万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic and Topological methods in Real Algebraic Geometry and Computational Complexity
实代数几何和计算复杂性中的概率和拓扑方法
- 批准号:
EP/V003542/1 - 财政年份:2021
- 资助金额:
$ 34.76万 - 项目类别:
Fellowship
Collaborative Research: AF: Small: On the Complexity of Semidefinite and Polynomial Optimization through the Lens of Real Algebraic Geometry
合作研究:AF:小:通过实代数几何的视角探讨半定和多项式优化的复杂性
- 批准号:
2128527 - 财政年份:2021
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: On the Complexity of Semidefinite and Polynomial Optimization through the Lens of Real Algebraic Geometry
合作研究:AF:小:通过实代数几何的视角探讨半定和多项式优化的复杂性
- 批准号:
2128702 - 财政年份:2021
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Structural stability problem of real algebraic maps and its application
实代数映射的结构稳定性问题及其应用
- 批准号:
20K03611 - 财政年份:2020
- 资助金额:
$ 34.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Real algebraic geometry and combinatorics
实代数几何和组合数学
- 批准号:
RGPIN-2018-04741 - 财政年份:2020
- 资助金额:
$ 34.76万 - 项目类别:
Discovery Grants Program - Individual
AF: Small: Symmetry, Randomness and Computations in Real Algebraic Geometry
AF:小:实代数几何中的对称性、随机性和计算
- 批准号:
1910441 - 财政年份:2019
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Real algebraic geometry and combinatorics
实代数几何和组合数学
- 批准号:
RGPIN-2018-04741 - 财政年份:2019
- 资助金额:
$ 34.76万 - 项目类别:
Discovery Grants Program - Individual