Collaborative Research: Molecular Spintronics with Single-Molecule Magnets

合作研究:单分子磁体的分子自旋电子学

基本信息

项目摘要

The broad goal of this proposal is to explore the interplay between localized high-spin states of an individual molecule and conduction electrons in order to develop molecular electronic devices for local magnetic field sensing, ultra-high-density information storage, and quantum information processing. Single-molecule magnets are characterized by a large total spin and a strong intrinsic anisotropy. They present some unique characteristics, such as quantum tunneling of the magnetization and Berry phase interference. Although extensively studied in crystalline form, some of their key properties remain elusive. For instance, it is unclear how quantum tunneling of the magnetization influences electronic conduction through these molecules. Understanding this property is crucial for any electronic device development. The proposed research program addresses these issues by combining chemical synthesis with experimental and theoretical physics to probe quantum properties of isolated single-molecule magnets. The molecules will be attached to nanometer-gapped metal electrodes and gated electrically to form a single-electron transistor. Device fabrication will make use of lithographic and electromigration techniques. The molecule?s electric conduction will be studied both statically and dynamically to reveal excited molecular states, the effect of different ligands, the Kondo effect, spin-polarized transport, the Berry-phase blockade, quantum oscillations of the magnetization, and decoherence,. The proposed study emphasizes exploring these phenomena toward practical devices. In particular: (i) to employ the intense magnetic field tunability of the Berry phase to obtain high-sensitivity local magnetic field nanosensors; (ii) to develop reading and writing procedures for molecular bits in high-density magnetic memories; and (iii) to demonstrate quantum logic gate operations in a molecular qubit. The team has extensive experience with single-molecule magnets and in quantum electronic transport. Preliminary results have demonstrated the team?s ability to fabricate suitable devices and to measure the IV characteristics of isolated molecules in the Coulomb blockade regime. Available facilities permit efficient device fabrication with a short turnover time. The facilities available to the team include low temperatures, high magnetic fields oriented in arbitrary directions, continuous-wave and pulsed high-frequency microwave excitations, and ultra-fast pulsed voltage gating.Intellectual Merit: Molecular electronics is rapidly becoming a separate research field within Applied Sciences and Engineering. The main effort so far has been on carbon-based systems or isotropic molecules containing a small net spin. This proposal focuses on molecules that are intrinsically magnetic due to their large spin and strong axial anisotropy. The research encompasses chemistry, physics, device fabrication and development, as well as fundamental studies at low temperatures and high magnetic fields. The proposed studies will lead to a better understanding of the quantum properties of isolated single-molecule magnets and how magnetism can be combined with electronic transport in a single-electron transistor setup.Broader Impact:The proposal will advance our knowledge of single molecule-based electronic devices. These devices have great potential for ultra-high density integration and quantum information processing, which may lead to new and revolutionary technologies. Several graduate and undergraduate students will be trained in the interface between inorganic chemistry and fundamental and applied physics within an environment that constantly crosses the boundaries of these disciplines.
这一提议的主要目标是探索单个分子的局域高自旋态与传导电子之间的相互作用,以开发用于局部磁场传感、超高密度信息存储和量子信息处理的分子电子器件。单分子磁体具有总自旋大、本征各向异性强等特点。它们呈现出一些独特的特性,如磁化强度的量子隧穿和Berry位相干涉。虽然以晶体的形式进行了广泛的研究,但它们的一些关键性质仍然难以捉摸。例如,目前还不清楚磁化的量子隧道如何影响通过这些分子的电子传导。了解这一特性对于任何电子设备的开发都至关重要。拟议的研究计划通过将化学合成与实验和理论物理相结合来解决这些问题,以探索孤立的单分子磁体的量子性质。这些分子将被连接到纳米间隙的金属电极上,并通过电选通形成单电子晶体管。器件制造将利用光刻和电迁移技术。对S分子的电导进行了静态和动态研究,揭示了分子的激发态、不同配体的效应、近藤效应、自旋极化输运、Berry相阻塞、磁化量子振荡和退相干。这项拟议的研究侧重于向实际设备探索这些现象。特别是:(I)利用Berry相的强磁场可调谐性来获得高灵敏度的局部磁场纳米传感器;(Ii)开发高密度磁存储器中分子比特的读写程序;以及(Iii)在分子量子比特中演示量子逻辑门操作。该团队在单分子磁体和量子电子传输方面拥有丰富的经验。初步结果表明,S团队有能力制造合适的器件,并在库仑阻塞区域测量孤立分子的IV特性。可用的设施允许以较短的周转时间高效地制造器件。该团队拥有的设施包括低温、任意方向的强磁场、连续波和脉冲高频微波激励以及超快脉冲电压门。智力优势:分子电子学正在迅速成为应用科学和工程学中的一个独立研究领域。到目前为止,主要的努力是在碳基系统或含有小净自旋的各向同性分子上。这一提议关注的是那些由于其大自旋和强烈的轴向各向异性而具有内在磁性的分子。这项研究包括化学、物理、器件制造和开发,以及低温和强磁场下的基础研究。拟议的研究将使我们更好地理解孤立的单分子磁体的量子性质,以及如何在单电子晶体管装置中将磁性与电子输运相结合。更广泛的影响:该提议将促进我们对基于单分子的电子器件的了解。这些器件在超高密度集成和量子信息处理方面具有巨大的潜力,可能会带来新的革命性技术。几名研究生和本科生将在一个不断跨越这些学科界限的环境中接受无机化学与基础和应用物理之间的接口培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Enrique del Barco其他文献

Molecular switching by proton-coupled electron transport drives giant negative differential resistance
质子偶联电子传输的分子开关驱动巨大的负微分电阻
  • DOI:
    10.1038/s41467-024-52496-y
  • 发表时间:
    2024-09-27
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Qian Zhang;Yulong Wang;Cameron Nickle;Ziyu Zhang;Andrea Leoncini;Dong-Chen Qi;Kai Sotthewes;Alessandro Borrini;Harold J. W. Zandvliet;Enrique del Barco;Damien Thompson;Christian A. Nijhuis
  • 通讯作者:
    Christian A. Nijhuis
Magnetic and microwave studies of high-spin states of single-molecule magnet Ni<sub>4</sub>
  • DOI:
    10.1016/j.poly.2005.03.137
  • 发表时间:
    2005-11-17
  • 期刊:
  • 影响因子:
  • 作者:
    Enrique del Barco;Andrew D. Kent;En-Che Yang;David N. Hendrickson
  • 通讯作者:
    David N. Hendrickson

Enrique del Barco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Enrique del Barco', 18)}}的其他基金

Conference: 2023 Spin Dynamics in Nanostructures GRC and GRS
会议:2023 纳米结构 GRC 和 GRS 中的自旋动力学
  • 批准号:
    2330529
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Quantum Dynamics of Spin in Single-Molecule Magnets
EAGER:单分子磁体中自旋的量子动力学
  • 批准号:
    2013662
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Designing Elemental Devices for Molecular Electronics - Molecular Diodes
设计分子电子学的基本器件 - 分子二极管
  • 批准号:
    1916874
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Single-Molecule Magnets: Internal Degrees of Freedom and Quantum Dynamics
单分子磁体:内部自由度和量子动力学
  • 批准号:
    1503627
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Spin Injection and Manipulation in Graphene-based Spintronics Devices
基于石墨烯的自旋电子器件中的自旋注入和操纵
  • 批准号:
    1402990
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Dynamical Spin Pumping in Graphene-based Spintronics Devices
基于石墨烯的自旋电子器件中的动态自旋泵浦
  • 批准号:
    1266049
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Investigation of the Quantum Dynamics of High-Spin States of Single-Molecule Magnets: Decoherence and Spin Manipulation
职业:单分子磁体高自旋态的量子动力学研究:退相干和自旋操纵
  • 批准号:
    0747587
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
SGER: Development of Single-Electron Transistors Based on Individual Single-Molecule Magnets
SGER:基于单个单分子磁体的单电子晶体管的开发
  • 批准号:
    0737802
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
  • 批准号:
    2321045
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347912
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347913
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
  • 批准号:
    2321044
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Catholyte Molecular Design For Non-aqueous Mg-organic Hybrid Redox Flow Batteries
合作研究:非水镁有机混合氧化还原液流电池的阴极电解液分子设计
  • 批准号:
    2419938
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319096
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319098
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: EDGE CMT: Genomic and molecular bases of pollination syndrome evolution in monkeyflowers
合作研究:EDGE CMT:猴花授粉综合征进化的基因组和分子基础
  • 批准号:
    2319721
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chemo-Physics and Molecular Design of In-situ Hydrogel-MXene Biosensors
合作研究:原位水凝胶-MXene生物传感器的化学物理和分子设计
  • 批准号:
    2320716
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了