Single-Molecule Magnets: Internal Degrees of Freedom and Quantum Dynamics
单分子磁体:内部自由度和量子动力学
基本信息
- 批准号:1503627
- 负责人:
- 金额:$ 41.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical abstract:This project seeks to develop the necessary experimental and educational tools for the study, understanding and dissemination of the quantum dynamics of nanometer sized molecular magnets under a broad range of experimental conditions. The control of quantum properties of nanoscale materials has led to the appearance of new emerging technologies, such as quantum information and computation processes. Nanoscale molecular systems have great potential for ultra-high density integration and quantum information processing, which are technologies that base on the fundamental properties studied in this project. The proposed research is strongly integrated with a series of educational activities. Several graduate and undergraduate students will be trained at the interface between inorganic chemistry and fundamental and applied physics, and exposed to a large, interdisciplinary and international net of collaborations that the principal investigator has established over many years. In addition, the research supports an initiative led by the principal investigator to create new Minor and B.A. degrees in Nanoscale Science and Technology at UCF, which are built around three new nano-courses where the project's research will be showcased. The courses are offered as Service-Learning courses and designed to promote the early involvement in science of K-12 students in participating middle schools in the Orlando metropolitan area.Technical abstract:This project seeks to consolidate an integrated experimental and educational framework for the study, understanding, and dissemination of knowledge that details the magnetic properties of single-molecule magnets under a broad range of experimental conditions. The specific scientific goals are: a) to understand the role played by internal degrees of freedom in the quantum tunneling of magnetization in molecular nanomagnets, and, b) to study the nature of the light-matter interaction in SMMs in the weak and strong coupling regimes, with the goal of achieving quantum coherent control over the molecular spin in view of application in quantum information, molecular spintronics and related emerging technologies. The project goals base on an expansion of pulse EPR spectroscopy extending down to low temperatures (~100mK), achieved with the use of high-sensitivity microstrip resonators (including high quality factor superconducting coplanar waveguide resonators), is expected to enable measurements of decoherence rates with a sensitivity two orders of magnitude smaller than those attained in previous studies. Indeed, the experimental setup resulting from this project allows the investigation of the three primary sources of decoherence, e.g., dipolar, nuclear and vibronic. Diminishing and controlling sources of decoherence in molecular nanomagnets may enable the large number of gate operations demanded by quantum algorithms and quantum error correction protocols. In addition, their intrinsic magnetic molecular anisotropy makes molecular nanomagnets natural systems of interest for the emerging field of molecular spintronics. The research project is strongly integrated with a series of educational activities designed to train graduate and undergraduate students at the interface between inorganic chemistry and fundamental and applied physics, and exposed to a large, interdisciplinary and international net of collaborations that the PI has established over many years. The proposal strategizes plans to continue an involvement of underrepresented groups in research at all levels, as illustrated in a strong record of activities undertaken by the PI that promote diversity in the laboratory. In addition, the research supports an initiative led by the principal investigator to create new Minor and B.A. degrees in Nanoscale Science and Technology at UCF, which are built around three new nano-courses where the project?s research will be showcased. The courses are offered as Service-Learning courses and designed to promote the early involvement in science of K-12 students in participating middle schools in the Orlando metropolitan area.
非技术摘要:本项目旨在开发必要的实验和教育工具,以便在广泛的实验条件下研究、理解和传播纳米级分子磁体的量子动力学。对纳米材料量子特性的控制导致了新兴技术的出现,如量子信息和计算过程。纳米级分子系统在超高密度集成和量子信息处理方面具有巨大的潜力,这些技术都是基于本项目研究的基本性质。拟议的研究与一系列教育活动紧密结合。一些研究生和本科生将在无机化学与基础和应用物理之间的界面进行培训,并接触到首席研究员多年来建立的大型跨学科和国际合作网络。此外,该研究还支持了由首席研究员领导的一项倡议,即在UCF创建纳米科学与技术的新副修和学士学位,这些学位围绕三个新的纳米课程建立,项目的研究将在这些课程中展示。这些课程作为服务学习课程提供,旨在促进奥兰多大都会地区参与中学的K-12学生早期参与科学。技术摘要:本项目旨在巩固一个综合的实验和教育框架,以研究、理解和传播知识,详细介绍单分子磁体在广泛的实验条件下的磁性。具体的科学目标是:a)了解内部自由度在分子纳米磁体磁化量子隧穿中的作用;b)研究弱耦合和强耦合状态下smm中光-物质相互作用的性质,以期在量子信息、分子自旋电子学和相关新兴技术中应用,实现对分子自旋的量子相干控制。该项目的目标是将脉冲EPR光谱扩展到低温(~100mK),使用高灵敏度微带谐振器(包括高质量因数超导共面波导谐振器)实现,预计能够以比以前研究中获得的灵敏度小两个数量级的灵敏度测量退相干率。事实上,这个项目的实验装置允许研究三种主要的退相干源,例如,偶极子,核和振动。减少和控制分子纳米磁体中的退相干源可以实现量子算法和量子纠错协议所需的大量门操作。此外,其固有的磁性分子各向异性使分子纳米磁体成为新兴的分子自旋电子学领域感兴趣的自然系统。该研究项目与一系列教育活动紧密结合,旨在培养研究生和本科生在无机化学与基础和应用物理之间的界面,并暴露在PI多年来建立的大型跨学科和国际合作网络中。该建议为继续让代表性不足的群体参与各级研究制定了战略计划,这一点在PI开展的促进实验室多样性的活动的良好记录中得到了说明。此外,这项研究还支持了由首席研究员领导的一项倡议,即在UCF创建纳米科学与技术的新副修学位和学士学位,这些学位是围绕三个新的纳米课程建立的。将展示美国的研究成果。这些课程作为服务学习课程提供,旨在促进奥兰多大都会地区参与中学的K-12学生早期参与科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Enrique del Barco其他文献
Molecular switching by proton-coupled electron transport drives giant negative differential resistance
质子偶联电子传输的分子开关驱动巨大的负微分电阻
- DOI:
10.1038/s41467-024-52496-y - 发表时间:
2024-09-27 - 期刊:
- 影响因子:15.700
- 作者:
Qian Zhang;Yulong Wang;Cameron Nickle;Ziyu Zhang;Andrea Leoncini;Dong-Chen Qi;Kai Sotthewes;Alessandro Borrini;Harold J. W. Zandvliet;Enrique del Barco;Damien Thompson;Christian A. Nijhuis - 通讯作者:
Christian A. Nijhuis
Magnetic and microwave studies of high-spin states of single-molecule magnet Ni<sub>4</sub>
- DOI:
10.1016/j.poly.2005.03.137 - 发表时间:
2005-11-17 - 期刊:
- 影响因子:
- 作者:
Enrique del Barco;Andrew D. Kent;En-Che Yang;David N. Hendrickson - 通讯作者:
David N. Hendrickson
Enrique del Barco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Enrique del Barco', 18)}}的其他基金
Conference: 2023 Spin Dynamics in Nanostructures GRC and GRS
会议:2023 纳米结构 GRC 和 GRS 中的自旋动力学
- 批准号:
2330529 - 财政年份:2023
- 资助金额:
$ 41.09万 - 项目类别:
Standard Grant
EAGER: Quantum Dynamics of Spin in Single-Molecule Magnets
EAGER:单分子磁体中自旋的量子动力学
- 批准号:
2013662 - 财政年份:2020
- 资助金额:
$ 41.09万 - 项目类别:
Continuing Grant
Designing Elemental Devices for Molecular Electronics - Molecular Diodes
设计分子电子学的基本器件 - 分子二极管
- 批准号:
1916874 - 财政年份:2019
- 资助金额:
$ 41.09万 - 项目类别:
Standard Grant
Spin Injection and Manipulation in Graphene-based Spintronics Devices
基于石墨烯的自旋电子器件中的自旋注入和操纵
- 批准号:
1402990 - 财政年份:2014
- 资助金额:
$ 41.09万 - 项目类别:
Standard Grant
Dynamical Spin Pumping in Graphene-based Spintronics Devices
基于石墨烯的自旋电子器件中的动态自旋泵浦
- 批准号:
1266049 - 财政年份:2013
- 资助金额:
$ 41.09万 - 项目类别:
Standard Grant
Collaborative Research: Molecular Spintronics with Single-Molecule Magnets
合作研究:单分子磁体的分子自旋电子学
- 批准号:
1001755 - 财政年份:2010
- 资助金额:
$ 41.09万 - 项目类别:
Continuing Grant
CAREER: Investigation of the Quantum Dynamics of High-Spin States of Single-Molecule Magnets: Decoherence and Spin Manipulation
职业:单分子磁体高自旋态的量子动力学研究:退相干和自旋操纵
- 批准号:
0747587 - 财政年份:2008
- 资助金额:
$ 41.09万 - 项目类别:
Continuing Grant
SGER: Development of Single-Electron Transistors Based on Individual Single-Molecule Magnets
SGER:基于单个单分子磁体的单电子晶体管的开发
- 批准号:
0737802 - 财政年份:2007
- 资助金额:
$ 41.09万 - 项目类别:
Continuing Grant
相似国自然基金
D-A类共轭聚合物晶界内部tie molecule构象调控
- 批准号:51573185
- 批准年份:2015
- 资助金额:70.0 万元
- 项目类别:面上项目
耦合可积系统及其molecule解的研究
- 批准号:11026119
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
CAREER: Design Strategies for High-Performance Bismuth- and Lanthanide-Based Single-Molecule Magnets
职业:高性能铋基和镧系单分子磁体的设计策略
- 批准号:
2339595 - 财政年份:2024
- 资助金额:
$ 41.09万 - 项目类别:
Continuing Grant
A Coordination Chemistry Approach to the Synthesis of Single-Molecule Magnets
合成单分子磁体的配位化学方法
- 批准号:
2350466 - 财政年份:2024
- 资助金额:
$ 41.09万 - 项目类别:
Continuing Grant
Femtosecond spin dynamics in single-molecule magnets
单分子磁体中的飞秒自旋动力学
- 批准号:
2821140 - 财政年份:2023
- 资助金额:
$ 41.09万 - 项目类别:
Studentship
Chiral Bridging/Chelating Alkoxide Ligands in 3d and 3d/4f Metal Cluster Chemistry: Novel Multifunctional Single Molecule Magnets
3d 和 3d/4f 金属簇化学中的手性桥连/螯合醇盐配体:新型多功能单分子磁体
- 批准号:
547751-2020 - 财政年份:2022
- 资助金额:
$ 41.09万 - 项目类别:
Postgraduate Scholarships - Doctoral
The Role of Dynamic Electron Correlation in Predicting Properties of Actinide-Based Single Molecule Magnets
动态电子关联在预测锕系单分子磁体特性中的作用
- 批准号:
557458-2021 - 财政年份:2022
- 资助金额:
$ 41.09万 - 项目类别:
Postdoctoral Fellowships
Synthesis and Studies of Single-Molecule Magnets Incorporating Strongly Coupled Two-Coordinate Metal Building Units
强耦合二配位金属构建单元单分子磁体的合成与研究
- 批准号:
2138017 - 财政年份:2022
- 资助金额:
$ 41.09万 - 项目类别:
Fellowship Award
Synthesis and characterization of high-performance single molecule magnets featuring heavy main-group heterocyclic ligands
重主族杂环配体高性能单分子磁体的合成与表征
- 批准号:
559619-2021 - 财政年份:2022
- 资助金额:
$ 41.09万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A Coordination Chemistry Approach to the Synthesis of Single- Molecule Magnets
合成单分子磁体的配位化学方法
- 批准号:
2102603 - 财政年份:2021
- 资助金额:
$ 41.09万 - 项目类别:
Continuing Grant
High-speed control of the magnetization of single-molecule magnets via fluctuation of the valence state of rare earth elements
通过稀土元素价态涨落高速控制单分子磁体磁化强度
- 批准号:
21K05010 - 财政年份:2021
- 资助金额:
$ 41.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Single-Molecule Magnets (SMMs) and Single-Ion Magnets (SIMs)
单分子磁体 (SMM) 和单离子磁体 (SIM)
- 批准号:
2608175 - 财政年份:2021
- 资助金额:
$ 41.09万 - 项目类别:
Studentship