Randomness, Dimension and Computability

随机性、维度和可计算性

基本信息

  • 批准号:
    1001847
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

The two most fundamental notions in effective randomness are Kolmogorov complexity and Martin-Löf randomness. The first measures the information content of finite binary strings, while the second captures the intuition that a random infinite binary sequence has no "distinguishing features". Both notions are rooted in computability theory, so it is natural that the study of randomness draws methods and ideas from computability theory, as well as classical mathematical subjects like measure theory and information theory. On the other hand, ideas from effective randomness have fed back into computability theory and even reverse mathematics, so there is cross-fertilization between effective randomness and other fields. Moreover, the theory of effective randomness has proved to be a rich field of study in its own right. Miller proposes to study the interaction between effective dimension and computational power, the interaction between degrees of randomness and computational power, triviality and lowness notions, and the strength of non-monotonic betting strategies.A sequence of zeros and ones is considered random if the shortest(binary) computer program that generates the sequence has essentially the same length as the sequence itself. Intuitively, a random sequence has no patterns that can be exploited to give a compressed description. For example, the sequence consisting of a million zeros can be generated easily by a short program, so it is not random. On the other hand, there is a high probability that a sequence generated by flipping a coin a million times (tails is zero, heads is one) will be random. The length of the shortest program for a sequence is called the Kolmogorov complexity of the sequence; this notion was introduced in the 1960s. An infinite sequence is considered random if all of its finite initial segments are sufficiently random. This is equivalent to saying that no (semi-)computable betting strategy can win money trying to predict the digits of the sequence. The proposed research will address fundamental questions about randomness. Some are speculative, such as: "What does it mean to say that one sequence is more random that another?" This question has lead to difficult technical problems.It has motivated much of Miller's work on the initial segment complexity of Martin-Löf randoms and has recently led to the formulation of a notion that seems to come closer to providing a satisfactory answer. On the other hand, technical work often reveals higher level patterns. For example, there is a growing body of evidence supporting the assertion: "More random sequences are less useful as oracles and computationally useless random sequences are automatically more random." This ties back into the question about what it means to be "more random". Other basic questions, such as "To what extent can we distill information out of a semi-random source?"have lead to interesting work but have not been exhausted on a technical level. Still others, like "How powerful are betting strategies that are allowed to bet on the digits of a sequence in any order?" remain largely open, despite concentrated effort. These are all fundamental questions that have proved to have interesting technical aspects.
有效随机性的两个最基本的概念是柯尔莫哥洛夫复杂性和马丁-洛夫随机性。第一个度量有限二进制字符串的信息内容,而第二个捕获随机无限二进制序列没有“区别特征”的直觉。这两个概念都植根于可计算性理论,所以随机性的研究很自然地从可计算性理论以及经典数学学科(如测度论和信息论)中汲取方法和思想。另一方面,来自有效随机性的思想已经反馈到可计算性理论甚至逆向数学中,因此有效随机性和其他领域之间存在交叉。此外,有效随机性理论本身已被证明是一个丰富的研究领域。米勒提出研究有效维数和计算能力之间的相互作用,随机度和计算能力之间的相互作用,平凡性和低性概念,以及非单调投注策略的强度。如果生成序列的最短(二进制)计算机程序具有与序列本身基本相同的长度,则0和1的序列被认为是随机的。直觉上,随机序列没有可以用来给出压缩描述的模式。例如,由一百万个零组成的序列可以很容易地由一个简短的程序生成,因此它不是随机的。另一方面,抛硬币一百万次(反面是0,正面是1)产生的序列很有可能是随机的。一个序列的最短程序的长度被称为序列的柯尔莫哥洛夫复杂度;这个概念是在20世纪60年代引入的。一个无限序列被认为是随机的,如果它的所有有限初始段是充分随机的。这相当于说,没有(半)可计算的投注策略可以赢得金钱试图预测的数字序列。拟议中的研究将解决有关随机性的基本问题。有些是推测性的,比如:“说一个序列比另一个序列更随机是什么意思?“这个问题导致了困难的技术问题,它激发了米勒对马丁-洛夫随机数初始片段复杂性的大量工作,最近导致了一个概念的形成,似乎更接近于提供一个令人满意的答案。另一方面,技术工作往往揭示更高层次的模式。例如,有越来越多的证据支持这一论断:“更多的随机序列作为预言机不那么有用,而计算上无用的随机序列自动变得更随机。这又回到了“更随机”意味着什么的问题。其他基本问题,如“我们能在多大程度上从半随机源中提取信息?“已经导致了有趣的工作,但在技术层面上还没有穷尽。还有一些,比如“允许以任何顺序对序列的数字下注的下注策略有多强大?“尽管集中努力,但仍然基本上开放。这些都是已经证明具有有趣的技术方面的基本问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Miller其他文献

Refractions and reflections.
折射和反射。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Joseph Miller
  • 通讯作者:
    Joseph Miller
Successful Immunotherapy of Acute Viral Infections with a Virus Vaccine
使用病毒疫苗成功治疗急性病毒感染
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph Miller
  • 通讯作者:
    Joseph Miller
PYOPNEUMOPERICARDITIS SECONDARY TO ENTERO-PERICARDIAL FISTULA: A RARE ETIOLOGY OF DYSPNEA
  • DOI:
    10.1016/s0735-1097(24)06389-7
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Tyler Q. Andrews;Connor Bunch;Mir Babar Basir;Joseph Miller
  • 通讯作者:
    Joseph Miller
An Unusual Cause of Dysphagia: Pericardial Effusion after Implantable Cardioverter-Defibrillator Placement
  • DOI:
    10.1016/j.jemermed.2011.03.035
  • 发表时间:
    2012-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aakash Chauhan;Minhaj S. Khaja;Vinod Chauhan;Richard L. Hallett;Joseph Miller;Harsha Musunuru;Mark Walsh
  • 通讯作者:
    Mark Walsh
Recurrent Chlamydial Colonization During Pregnancy
怀孕期间反复出现衣原体定植

Joseph Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Miller', 18)}}的其他基金

Buenos Aires Semester in Computability, Complexity and Randomness
布宜诺斯艾利斯可计算性、复杂性和随机性学期
  • 批准号:
    1242444
  • 财政年份:
    2013
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Randomness and Computability
随机性和可计算性
  • 批准号:
    0945187
  • 财政年份:
    2009
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Algorithmic Randomness
FRG:协作研究:算法随机性
  • 批准号:
    0946325
  • 财政年份:
    2009
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Algorithmic Randomness
FRG:协作研究:算法随机性
  • 批准号:
    0652677
  • 财政年份:
    2007
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Randomness and Computability
随机性和可计算性
  • 批准号:
    0601021
  • 财政年份:
    2006
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Phylogeny and Evolution of American Taxa of Acacia Subgenus Acacia
合作研究:美洲金合欢亚属金合欢类群的系统发育和进化
  • 批准号:
    0414902
  • 财政年份:
    2004
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Continued Development of a CCD for Astronomy
天文学 CCD 的持续开发
  • 批准号:
    8914908
  • 财政年份:
    1990
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Studies of Quasi-Stellar Objects and Related Active Systems
类星体及相关主动系统研究
  • 批准号:
    8818925
  • 财政年份:
    1989
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
A Program to Develop an Astronomy Charge-Coupled Device Imager
开发天文学电荷耦合器件成像仪的计划
  • 批准号:
    8617297
  • 财政年份:
    1987
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Charge-Coupled Devices for Astronomical Research at Lick Observatory
利克天文台用于天文研究的电荷耦合装置
  • 批准号:
    8514682
  • 财政年份:
    1985
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似海外基金

Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
  • 批准号:
    24K16928
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Cochlear implants and spatial hearing: Enabling access to the next dimension of hearing (Cherish)
人工耳蜗和空间听力:实现听力的下一个维度(Cherish)
  • 批准号:
    EP/Y031946/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grant
Magmatic volatiles in the fourth dimension
第四维度的岩浆挥发物
  • 批准号:
    NE/X013642/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
  • 批准号:
    2306438
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
CAREER: Timeliness as a Controllable Dimension via Knowledge-driven System Management
职业:通过知识驱动的系统管理将及时性作为可控维度
  • 批准号:
    2238476
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Calculating the Essential p-Dimension of the Finite Simple Groups
计算有限单群的本质 p 维数
  • 批准号:
    2302822
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Fellowship Award
SHINE: Testing Theories of Coronal Heating and Solar Wind Acceleration with Multi-Messenger Data and Four-Dimension (4D) Forward Modeling
SHINE:利用多信使数据和四维 (4D) 正演模型测试日冕加热和太阳风加速理论
  • 批准号:
    2300452
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Transcendental Dynamics: Hausdorff Dimension and Itineraries
超越动力学:豪斯多夫维度和行程
  • 批准号:
    2885593
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Studentship
Probing the role of feature dimension maps in visual cognition
探讨特征维度图在视觉认知中的作用
  • 批准号:
    10720841
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
ExoTiC-3DWebb: Exoplanet Timeseries Characterisation: Unlocking the Third Dimension of Atmospheres with Webb
ExoTiC-3DWebb:系外行星时间序列表征:通过 Webb 解锁大气的第三维
  • 批准号:
    EP/Y006313/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了