EAGER/Collaborative Research: Accelerating Innovation in Agent-Based Simulations: Application to Complex Socio-Behavioral Phenomena

EAGER/协作研究:加速基于代理的模拟创新:在复杂社会行为现象中的应用

基本信息

  • 批准号:
    1002519
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-02-01 至 2012-01-31
  • 项目状态:
    已结题

项目摘要

Increasingly, the engineering of complex systems requires consideration of an intricate web of components and their interaction in diverse social and technical environments. Simulation can assist in designing and testing socio-technical systems by allowing the potential space of outcomes to be explored under given designs. Agent-based models have been developed as a method for building models of complex systems, with great success. Agents may be designed to represent system components and to specify the interactions between them in an incredible level of detail. While popular, the full potential of the methodology to support engineering of complex systems has not been reached, however, because of a set of key challenges. First, there exists a relative lack of robust methods for calibrating agent-based models to theory. Second, there is a paucity of reliable approaches for extracting coarse-grained, system level information as it emerges in agent-based simulations. Third, there is a dearth of schemes for handling uncertainty in the application of agent-based rules to system behavior. Fourth, computation of agent-based models is inefficient when agents are numerous in volume and richly-specified in behavior. Together, these impediments constrain the ability of agent-based modeling to enable prediction, to support decisions, and to facilitate the design, control, and optimization of complex systems. The main objective of this project is to broaden the extensibility of agent-based modeling beyond these constraints. This will be achieved by developing novel computational methods to fuse agent-based modeling, uncertainty measurement and quantification, and mathematics for pattern-extraction. This project will expand the capabilities of agent-based modeling in supporting the design, engineering, and testing of complex systems. Our initial focus is to develop a prototype scheme that can be applied to complex socio-behavioral systems, but the project is of potential relevance across a diverse array of substantive areas. Indeed, one of our central aims is to provide the glue that can bridge diverse schemes for agent-based simulation across application areas. This could be incredibly useful in reconciling agent-based modeling into a larger "ecology" of mathematical modeling and computation, fundamentally expanding the range of questions that can be posed and systems that can be explored in simulation, while better linking simulation to real-world dynamics.
复杂系统的工程设计越来越需要考虑复杂的组件网络及其在不同社会和技术环境中的相互作用。模拟可以通过允许在给定的设计下探索潜在的结果空间来帮助设计和测试社会技术系统。基于Agent的模型已经发展成为一种建立复杂系统模型的方法,并取得了巨大的成功。代理可以被设计为表示系统组件,并以令人难以置信的细节级别指定它们之间的交互。虽然流行,但由于一系列关键挑战,该方法支持复杂系统工程的全部潜力尚未达到。首先,存在一个相对缺乏强大的方法来校准基于代理的模型理论。其次,有一个可靠的方法提取粗粒度,系统级的信息,因为它出现在基于代理的模拟缺乏。第三,在将基于代理的规则应用于系统行为时,缺乏处理不确定性的方案。第四,基于代理的模型的计算是低效的,当代理数量众多且行为丰富时。总之,这些障碍限制了基于代理的建模的能力,使预测,支持决策,并促进复杂系统的设计,控制和优化。这个项目的主要目标是扩大基于代理的建模超出这些限制的可扩展性。这将通过开发新的计算方法来实现,以融合基于代理的建模,不确定性测量和量化,以及模式提取的数学。该项目将扩展基于代理的建模的能力,以支持复杂系统的设计,工程和测试。我们最初的重点是开发一个原型计划,可以应用于复杂的社会行为系统,但该项目是在各种各样的实质性领域的潜在相关性。事实上,我们的中心目标之一是提供胶水,可以桥接不同的方案,基于代理的模拟跨应用领域。这在将基于代理的建模协调成更大的数学建模和计算“生态”方面非常有用,从根本上扩展了可以提出的问题和可以在模拟中探索的系统的范围,同时更好地将模拟与现实世界的动态联系起来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Torrens其他文献

Paul Torrens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Torrens', 18)}}的其他基金

Collaborative Research: National Symposium on PRedicting Emergence of Virulent Entities by Novel Technologies (PREVENT)
合作研究:利用新技术预测有毒实体出现的全国研讨会(预防)
  • 批准号:
    2115122
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
RAPID: Examining public spatial behavior during the COVID-19 outbreak
RAPID:检查 COVID-19 爆发期间的公共空间行为
  • 批准号:
    2027652
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Fleeting Decisions and Risks in Pedestrian Road-Crossing Behavior: Building Insight with Next-Generation Data, Models, and Platforms
行人过马路行为中的短暂决策和风险:利用下一代数据、模型和平台构建洞察力
  • 批准号:
    1729815
  • 财政年份:
    2017
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Collaborative Research: RIPS Type 1: Human Geography Motifs to Evaluate Infrastructure Resilience
合作研究:RIPS 类型 1:评估基础设施弹性的人文地理学主题
  • 批准号:
    1664275
  • 财政年份:
    2016
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Collaborative Research: RIPS Type 1: Human Geography Motifs to Evaluate Infrastructure Resilience
合作研究:RIPS 类型 1:评估基础设施弹性的人文地理学主题
  • 批准号:
    1441177
  • 财政年份:
    2014
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
CAREER: Exploring the Dynamics of Individual Pedestrian and Crowd Behavior in Dense Urban Settings: A Computational Approach
职业:探索密集城市环境中个体行人和人群行为的动态:一种计算方法
  • 批准号:
    1231873
  • 财政年份:
    2011
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
CAREER: Exploring the Dynamics of Individual Pedestrian and Crowd Behavior in Dense Urban Settings: A Computational Approach
职业:探索密集城市环境中个体行人和人群行为的动态:一种计算方法
  • 批准号:
    0643322
  • 财政年份:
    2007
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了