Symplectic homology and Stein manifolds
辛同调和斯坦因流形
基本信息
- 批准号:1005365
- 负责人:
- 金额:$ 13.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-1005365Principal Investigator: Mark McLeanThe subject area of this project is the symplectic geometry of Stein manifolds. A Stein manifold is a properly embedded complex submanifold of complex affine space. This has a symplectic form induced from the standard one in affine space. If we take a large sphere and intersect it with this Stein manifold then we get another manifold called a Stein fillable contact manifold. Important progress in studying Stein manifolds symplectically was achieved by Eliashberg and Gromov. The primary aim of this project is to find exotic Stein structures and Stein fillable contact structures. The PI intends to prove that there are uncountably many symplectically different Stein structures diffeomorphic to an even dimensional manifold admitting a proper and bounded from below Morse function with only finitely many critical points of index at most half its dimension. The PI also intends to prove that there are infinitely many Stein fillable contact structures on each odd dimensional sphere of dimension 5 and higher, and more generally on Stein fillable contact manifolds obtained from affine varieties. The PI will use an invariant of Stein manifolds called symplectic homology to distinguish these. The PI also aims to show that there is no algorithm to tell you whether one Stein manifold diffeomorphic to affine space is symplectomorphic to another one diffeomorphic to affine space of complex dimension greater than 6. The PI also aims prove a similar undecidability result for contact structures on all odd dimensional spheres of dimension greater than 13. The PI will use an invariant called the growth rate of symplectic homology to achieve this. The PI will use growth rates to show that certain cotangent bundles have many Reeb orbits (even degenerate ones). This generalizes the Gromoll-Meyer theorem. The PI will show that the cotangent bundle of a rationally hyperbolic manifold is not symplectomorphic to a smooth affine variety using growth rates.If we have some classical system such as a pendulum then at any point in time it has a particular position and momentum. If this system has many moving parts such as a double pendulum or a collection free particles then it has many positions and momenta. The set of all such positions and momenta can be encoded in an object called a symplectic manifold. For example the symplectic manifold associated to a pendulum turns out to be a cylinder. Symplectic manifolds are important in many areas of physics such as quantum mechanics and String theory. The PI will study a large class of symplectic manifolds obtained from objects called Stein manifolds. The PI will construct a large list of Stein manifolds called exotic Stein manifolds which look very similar to the symplectic manifold coming from a set of free particles but are actually different if we look at the motion of their respective classical systems. The PI intends to show that there is no computer algorithm telling you if two given exotic Stein manifolds come from the same classical system. This result is useful because it tells us that certain classical systems are very hard to study in general.
摘要奖:DMS-1005365首席研究员:马克麦克莱恩这个项目的主题领域是辛几何的斯坦流形。Stein流形是复仿射空间的适当嵌入的复子流形。这有一个辛形式从标准的仿射空间。如果我们取一个大的球面,和这个Stein流形相交,那么我们得到另一个流形,叫做Stein可填充接触流形。Eliashberg和Gromov在辛地研究Stein流形方面取得了重要进展。本项目的主要目的是寻找奇异的Stein结构和Stein可填充接触结构。 PI的目的是证明,有无穷多个辛不同的Stein结构同构于一个偶数维流形,承认一个适当的和有界的从下面的莫尔斯函数,只有100多个临界点的指数最多一半的维度。PI还打算证明,有无穷多个斯坦可填充接触结构上的每个奇数维球体的尺寸5和更高,更一般的斯坦可填充接触流形从仿射品种。PI将使用称为辛同调的Stein流形不变量来区分这些。PI还旨在表明,没有算法可以告诉你一个仿射空间的Stein流形是否与另一个复维数大于6的仿射空间的Stein流形辛同构。PI的目的也是为了证明一个类似的不可判定性的结果,接触结构的所有奇数维球体的尺寸大于13。PI将使用称为辛同调增长率的不变量来实现这一点。PI将使用增长率来证明某些余切丛有许多Reeb轨道(甚至退化的)。这推广了Gromoll-Meyer定理。PI将表明,一个有理双曲流形的余切丛不是辛形的光滑仿射簇使用的增长率。如果我们有一些经典系统,如钟摆,那么在任何时间点,它有一个特定的位置和动量。如果这个系统有许多运动部件,比如一个双摆或一个自由粒子的集合,那么它就有许多位置和动量。所有这些位置和动量的集合可以被编码在一个称为辛流形的对象中。例如,与钟摆相关联的辛流形原来是圆柱体。辛流形在物理学的许多领域都很重要,例如量子力学和弦理论。PI将研究从称为Stein流形的对象获得的一大类辛流形。PI将构建一个称为奇异Stein流形的Stein流形的大列表,这些流形看起来非常类似于来自一组自由粒子的辛流形,但如果我们观察它们各自经典系统的运动,它们实际上是不同的。PI旨在表明,没有计算机算法告诉你,如果两个给定的奇异Stein流形来自同一个经典系统。这个结果是有用的,因为它告诉我们,某些经典系统是很难研究的一般。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark McLean其他文献
Improved single molecule localization using a dual objective system
使用双物镜系统改进单分子定位
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Abhishek Kumar;J. Marr;Mark McLean;J. Woodcock;A. Mautino;J. Gilman;S. Stranick;V. Szalai;J. Liddle - 通讯作者:
J. Liddle
Singularities and Semistable Degenerations for Symplectic Topology
辛拓扑的奇点和半稳定简并
- DOI:
10.1016/j.crma.2018.02.009 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Tehrani;Mark McLean;A. Zinger - 通讯作者:
A. Zinger
Local Floer homology and infinitely many simple Reeb orbits
局部Floer同源性和无限多个简单Reeb轨道
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mark McLean - 通讯作者:
Mark McLean
Postpartum dysglycaemia after early gestational diabetes: Follow-up of women in the TOBOGM randomised controlled trial
- DOI:
10.1016/j.diabres.2024.111929 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
N. Wah Cheung;Yoon J.J. Rhou;Jincy Immanuel;William M. Hague;Helena Teede;Christopher J. Nolan;Michael J. Peek;Jeff R. Flack;Mark McLean;Vincent W. Wong;Emily J. Hibbert;Alexandra Kautzky-Willer;Jürgen Harreiter;Helena Backman;Emily Gianatti;Arianne Sweeting;Vishwanathan Mohan;David Simmons - 通讯作者:
David Simmons
Symplectic homology of Lefschetz fibrations and Floer homology of the monodromy map
Lefschetz 纤维的辛同源性和单峰图的 Floer 同源性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mark McLean - 通讯作者:
Mark McLean
Mark McLean的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark McLean', 18)}}的其他基金
Floer Theory, Arc Spaces, and Singularities
弗洛尔理论、弧空间和奇点
- 批准号:
2203308 - 财政年份:2022
- 资助金额:
$ 13.01万 - 项目类别:
Standard Grant
Floer Cohomology and Birational Geometry
弗洛尔上同调和双有理几何
- 批准号:
1811861 - 财政年份:2018
- 资助金额:
$ 13.01万 - 项目类别:
Continuing Grant
Contact Geometry of Links of Singularities and Affine Varieties
奇点和仿射簇链接的接触几何
- 批准号:
1508207 - 财政年份:2015
- 资助金额:
$ 13.01万 - 项目类别:
Continuing Grant
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 13.01万 - 项目类别:
Study on Contact Homology by String Topology
弦拓扑接触同调研究
- 批准号:
23KJ1238 - 财政年份:2023
- 资助金额:
$ 13.01万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 13.01万 - 项目类别:
Targeting NuoD for the treatment of H. pylori
靶向 NuoD 治疗幽门螺杆菌
- 批准号:
10659783 - 财政年份:2023
- 资助金额:
$ 13.01万 - 项目类别:
Identifying Genetic Contributions to Adverse Drug Reactions
确定遗传因素对药物不良反应的影响
- 批准号:
10730434 - 财政年份:2023
- 资助金额:
$ 13.01万 - 项目类别:
Characterization of disulfide modified diabetogenic neoepitopes
二硫键修饰的糖尿病新表位的表征
- 批准号:
10720644 - 财政年份:2023
- 资助金额:
$ 13.01万 - 项目类别:
Role and Theranostics Potential of Enolase in Prostate Cancer Health Disparities
烯醇化酶在前列腺癌健康差异中的作用和治疗潜力
- 批准号:
10649164 - 财政年份:2023
- 资助金额:
$ 13.01万 - 项目类别:
Natural products inhibitors targeting homology-directed DNA repair for cancer therapy
针对癌症治疗的同源定向 DNA 修复的天然产物抑制剂
- 批准号:
10651048 - 财政年份:2023
- 资助金额:
$ 13.01万 - 项目类别:
Targeting SHP-1 through a newfound metabolite-regulated cysteine activation site
通过新发现的代谢物调节的半胱氨酸激活位点靶向 SHP-1
- 批准号:
10802649 - 财政年份:2023
- 资助金额:
$ 13.01万 - 项目类别:
Molecular mechanism of membrane association of Bruton's Tyrosine Kinase
布鲁顿酪氨酸激酶膜缔合的分子机制
- 批准号:
10604872 - 财政年份:2023
- 资助金额:
$ 13.01万 - 项目类别: