Floer Theory, Arc Spaces, and Singularities
弗洛尔理论、弧空间和奇点
基本信息
- 批准号:2203308
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is concerned with the development of certain tools for use in two areas of mathematics: algebraic geometry and symplectic geometry. Algebraic geometry studies mathematical objects called varieties that are solutions of equations built from addition and multiplication. Symplectic geometry is the natural geometry that emerges when one studies Hamilton's equations, which are equations describing the motion of classical physical systems. A very important collection of tools, called Floer theory, has been utilized to solve many problems in both of the subject areas above. However, these tools are hard to use since the computations involved can be quite difficult. A part of this project involves finding better computational techniques via an object called the arc space. Another part of this project is concerned with finding more refined ways of counting curves inside varieties as well as establishing efficient foundations for such counts using ideas from symplectic geometry. Additionally, the PI will help mentor a summer workshop for graduate students as well as engage with the Stony Brook math summer camp for high school students. In his role as the graduate director at Stony Brook, the PI will be involved in many student-centered activities.The broad aim of this project is to better understand Floer theory and its relationship with symplectic and algebraic geometry. To this end, the PI will utilize arc spaces to compute various Floer algebras. The arc space of a variety is the space of holomorphic maps from a disk to that variety. The PI will show that Floer cohomology of iterates of the monodromy of an isolated hypersurface singularity is compactly supported cohomology of jets of certain arcs. Another project is to compute the full contact homology of any isolated singularity in terms of its arc space. The PI aims to prove that there is a spectral sequence computing symplectic cohomology of affine varieties whose pages are also compactly supported cohomology groups of jets of certain arcs at infinity. The PI, along with collaborators Abouzaid and Smith, has a project defining Morava K-theoretic Gromov-Witten invariants in a more efficient way as well as over some other generalized cohomology theories. This project will also use the new idea of constructing a global Kuranishi chart from an enlarged moduli space of curves. Finally in joint work with Ritter, the PI will investigate the crepant resolution conjecture using Hamiltonian Floer cohomology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及到开发某些工具,用于两个数学领域:代数几何和辛几何。代数几何学研究的数学对象称为品种,是从加法和乘法方程的解决方案。辛几何是自然的几何出现时,一个研究汉密尔顿方程,这是方程描述运动的经典物理系统。一个非常重要的工具集,称为Floer理论,已被用来解决上述两个主题领域的许多问题。然而,这些工具很难使用,因为所涉及的计算可能相当困难。这个项目的一部分涉及通过一个称为弧空间的对象来寻找更好的计算技术。这个项目的另一部分是关于寻找更精确的方法来计算品种内的曲线,以及使用辛几何的思想为这种计算建立有效的基础。此外,PI将帮助指导研究生的暑期研讨会,并与高中生的斯托尼布鲁克数学夏令营。作为斯托尼布鲁克的研究生主任,PI将参与许多以学生为中心的活动。该项目的主要目的是更好地理解Floer理论及其与辛几何和代数几何的关系。为此,PI将利用弧空间来计算各种Floer代数。簇的弧空间是从圆盘到该簇的全纯映射的空间。PI将表明孤立超曲面奇点的单值迭代的Floer上同调是某些弧的喷流的紧支撑上同调。另一个方案是计算任意孤立奇点在弧空间上的全切触同调。PI的目的是证明有一个谱序列计算辛上同调的仿射品种,其网页也是紧支持的上同调群的某些弧在无穷远。PI,沿着与合作者Abouzaid和Smith,有一个项目定义Morava K-理论Gromov-Witten不变量在一个更有效的方式,以及在其他一些广义上同调理论。本项目还将使用从扩大的曲线模空间构建全局Kuranishi图的新思想。最后,在与Ritter的合作中,PI将使用Hamilton Floer上同调研究crepant分辨率猜想。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark McLean其他文献
Improved single molecule localization using a dual objective system
使用双物镜系统改进单分子定位
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Abhishek Kumar;J. Marr;Mark McLean;J. Woodcock;A. Mautino;J. Gilman;S. Stranick;V. Szalai;J. Liddle - 通讯作者:
J. Liddle
Singularities and Semistable Degenerations for Symplectic Topology
辛拓扑的奇点和半稳定简并
- DOI:
10.1016/j.crma.2018.02.009 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Tehrani;Mark McLean;A. Zinger - 通讯作者:
A. Zinger
Local Floer homology and infinitely many simple Reeb orbits
局部Floer同源性和无限多个简单Reeb轨道
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mark McLean - 通讯作者:
Mark McLean
Postpartum dysglycaemia after early gestational diabetes: Follow-up of women in the TOBOGM randomised controlled trial
- DOI:
10.1016/j.diabres.2024.111929 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
N. Wah Cheung;Yoon J.J. Rhou;Jincy Immanuel;William M. Hague;Helena Teede;Christopher J. Nolan;Michael J. Peek;Jeff R. Flack;Mark McLean;Vincent W. Wong;Emily J. Hibbert;Alexandra Kautzky-Willer;Jürgen Harreiter;Helena Backman;Emily Gianatti;Arianne Sweeting;Vishwanathan Mohan;David Simmons - 通讯作者:
David Simmons
Symplectic homology of Lefschetz fibrations and Floer homology of the monodromy map
Lefschetz 纤维的辛同源性和单峰图的 Floer 同源性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mark McLean - 通讯作者:
Mark McLean
Mark McLean的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark McLean', 18)}}的其他基金
Floer Cohomology and Birational Geometry
弗洛尔上同调和双有理几何
- 批准号:
1811861 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Contact Geometry of Links of Singularities and Affine Varieties
奇点和仿射簇链接的接触几何
- 批准号:
1508207 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
- 批准号:
DP240101511 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Discovery Projects
Numerical simulations of lattice field theory
晶格场论的数值模拟
- 批准号:
2902259 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Studentship
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant