Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
基本信息
- 批准号:2003892
- 负责人:
- 金额:$ 50.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Low-dimensional topology, the study of objects modeled on surfaces (two dimensions), our space (three dimensions), and space-time (four dimensions), is a central area of mathematics of intense contemporary interest. It is at the crossroad of many subfields of mathematics. Methods from combinatorial topology, geometry, minimal surface theory, analysis, group theory, number theory, dynamical systems, and theoretical computer science have contributed to the development of low dimensional topology, and conversely, research in that field stimulates advances in those areas. This research project addresses topics in hyperbolic geometry and foliation theory, which are structures for globally understanding three dimensional spaces, and will also address fundamental questions in smooth 4-dimensional topology. Parts of the research are suitable for undergraduate and beginning graduate student projects. Background material needed for the research as well as new ideas discovered will be incorporated into graduate courses. The award provides funds to support graduate students.The investigator will continue his approach to the smooth 4-dimensional Schoenflies conjecture through the investigation of knotted three-balls in four-dimensional manifolds and diffeomorphisms of four-dimensional manifolds. He plans to discover new constructions of foliations and laminations and to address the structure of low volume hyperbolic 3-manifolds. The PI and collaborators have discovered new techniques to address these problems and plan to use these methods and discover new ones to make further advances.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
低维拓扑学是对物体在表面(二维)、我们的空间(三维)和时空(四维)上建模的研究,是当代数学研究的一个中心领域。它处在数学的许多子领域的十字路口。组合拓扑学、几何学、极小曲面论、分析学、群论、数论、动力系统和理论计算机科学的方法促进了低维拓扑学的发展,反过来,该领域的研究也促进了这些领域的进步。这项研究项目涉及双曲几何和分层理论,这是全球理解三维空间的结构,也将解决光滑4维拓扑的基本问题。这项研究的一部分适用于本科生和研究生入门项目。研究所需的背景材料以及发现的新想法将被纳入研究生课程。该奖项为研究生提供资助。研究人员将通过研究四维流形中的纽结三球和四维流形的微分同胚来继续他对光滑的四维Schoenfys猜想的研究。他计划发现新的叶状和层状结构,并解决低体积双曲3-流形的结构问题。PI和合作者已经发现了解决这些问题的新技术,并计划使用这些方法并发现新的方法以取得进一步的进步。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-referential discs and the light bulb lemma
自指圆盘和灯泡引理
- DOI:10.4171/cmh/518
- 发表时间:2021
- 期刊:
- 影响因子:0.9
- 作者:Gabai, David
- 通讯作者:Gabai, David
The Two-Eyes Lemma: A Linking Problem for Table-Top Necklaces
两只眼引理:桌面项链的链接问题
- DOI:10.1007/s00373-021-02439-x
- 发表时间:2022
- 期刊:
- 影响因子:0.7
- 作者:Gabai, David;Meyerhoff, Robert;Yarmola, Andrew
- 通讯作者:Yarmola, Andrew
The fully marked surface theorem
完全标记曲面定理
- DOI:10.4310/acta.2020.v225.n2.a4
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:Gabai, David;Yazdi, Mehdi
- 通讯作者:Yazdi, Mehdi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Gabai其他文献
Exceptional hyperbolic 3-manifolds
特殊的双曲 3 流形
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
David Gabai;M. Trnkova - 通讯作者:
M. Trnkova
Foliations and the topology of 3-manifolds
- DOI:
10.4310/jdg/1214437784 - 发表时间:
1987-11 - 期刊:
- 影响因子:2.5
- 作者:
David Gabai - 通讯作者:
David Gabai
Almost filling laminations and the connectivity of ending lamination space
- DOI:
10.2140/gt.2009.13.1017 - 发表时间:
2008-08 - 期刊:
- 影响因子:0
- 作者:
David Gabai - 通讯作者:
David Gabai
THE SMALE CONJECTURE FOR HYPERBOLIC 3-MANIFOLDS
双曲3流形的SMALE猜想
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
David Gabai - 通讯作者:
David Gabai
Pseudo-isotopies of simply connected 4-manifolds
简单连接的 4 流形的赝同位素
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
David Gabai;David T. Gay;Daniel Hartman;Vyacheslav Krushkal;Mark Powell - 通讯作者:
Mark Powell
David Gabai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Gabai', 18)}}的其他基金
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
- 批准号:
2304841 - 财政年份:2023
- 资助金额:
$ 50.46万 - 项目类别:
Continuing Grant
Hyperbolic Geometry, Heegaard Surfaces, Foliation/Lamination Theory, and Smooth Four-Dimensional Topology
双曲几何、Heegaard 曲面、叶状/层状理论和平滑四维拓扑
- 批准号:
1607374 - 财政年份:2016
- 资助金额:
$ 50.46万 - 项目类别:
Continuing Grant
Problems in Low Dimensional Geometry and Topology
低维几何和拓扑问题
- 批准号:
1006553 - 财政年份:2010
- 资助金额:
$ 50.46万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Mean curvature flow as a tool in low dimensional topology
FRG:协作研究:平均曲率流作为低维拓扑的工具
- 批准号:
0854969 - 财政年份:2009
- 资助金额:
$ 50.46万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Mean curvature flow as a tool in low dimensional topology
FRG:协作研究:平均曲率流作为低维拓扑的工具
- 批准号:
0854767 - 财政年份:2009
- 资助金额:
$ 50.46万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Understanding Low Volume Hyperbolic 3-Manifolds
FRG:协作研究:了解小体积双曲 3 流形
- 批准号:
0554374 - 财政年份:2006
- 资助金额:
$ 50.46万 - 项目类别:
Standard Grant
Low Dimensional Topology and Hyperbolic Geometry
低维拓扑和双曲几何
- 批准号:
0504110 - 财政年份:2005
- 资助金额:
$ 50.46万 - 项目类别:
Continuing Grant
相似国自然基金
基于高速可重构匹配网络的VHF宽带多路跳频Manifold耦合器基础问题研究
- 批准号:61001012
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference on Classical and Quantum 3-Manifold Topology
经典与量子三流形拓扑会议
- 批准号:
1841116 - 财政年份:2018
- 资助金额:
$ 50.46万 - 项目类别:
Standard Grant
Symmetries of spatial graphs by 3-manifold topology
三流形拓扑空间图的对称性
- 批准号:
16K05163 - 财政年份:2016
- 资助金额:
$ 50.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large scale index, positive scalar curvature and manifold topology
大尺度指数、正标量曲率和流形拓扑
- 批准号:
321324296 - 财政年份:2016
- 资助金额:
$ 50.46万 - 项目类别:
Research Grants
Topology of conformally flat Lorentz manifold and various geometric structures
共形平坦洛伦兹流形拓扑和各种几何结构
- 批准号:
24540087 - 财政年份:2012
- 资助金额:
$ 50.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
4-Manifold topology and related topics
4-流形拓扑及相关主题
- 批准号:
1005304 - 财政年份:2010
- 资助金额:
$ 50.46万 - 项目类别:
Standard Grant
DNA Knotting and Linking: Applications of 3-Manifold Topology to DNA-Protein Interactions
DNA 打结和连接:三流形拓扑在 DNA-蛋白质相互作用中的应用
- 批准号:
EP/G039585/1 - 财政年份:2009
- 资助金额:
$ 50.46万 - 项目类别:
Research Grant
FRG: Collaborative Research: How the Algebraic Topology of Closed Manifold Relates to Strings and 2D Quantum Field Theory
FRG:协作研究:闭流形的代数拓扑如何与弦和二维量子场论相关
- 批准号:
0757253 - 财政年份:2008
- 资助金额:
$ 50.46万 - 项目类别:
Standard Grant
FRG: Collaborative Research: How the Algebraic Topology of Closed Manifold Relates to Strings and 2D Quantum Field Theory
FRG:协作研究:闭流形的代数拓扑如何与弦和二维量子场论相关
- 批准号:
0757293 - 财政年份:2008
- 资助金额:
$ 50.46万 - 项目类别:
Standard Grant