Spatiotemporal Regulated Click Hydrogels for 3D Cell Culture

用于 3D 细胞培养的时空调节点击水凝胶

基本信息

  • 批准号:
    1006711
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-15 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

The aim of this proposal is to fully develop click chemistry reactions to create a dynamic in vitro 3D cell culture platform that will enable researchers to explore how cell-material interactions influence important cellular functions. These biomaterials will give the user control of specific physical, chemical, and biological cues comprising the cell microenvironment in both time and space. To accomplish this significant challenge, the proposed work will exploit the classic alkyne/azide click chemistry, modified to enable a cytocompatible copper-free polymerization, to synthesize basic hydrogels as a simplified mimic of the extracellular matrix in the presence of cells. The biochemical functionality of the gels will then be tuned using a new variant of click chemistry, a thiol-ene photoaddition reaction, that is fully compatible with peptide chemistry and allows spatiotemporally regulated introduction of biological epitopes. Finally, a photodegradable linker will be integrated into the crosslinks of the base gel formulation to allow light directed degradation of the material. Using these three independent and cytocompatible reactions for gelation, photodegradation, and photocoupling, dynamic biomaterials systems will be created that will provide newfound opportunities to probe the dynamic exchange of information between cells and their microenvironment. The specific aims of this work are to: (1) synthesize click-based hydrogels using orthogonal chemistries that allow manipulation of the material properties through photodegradation and introduction of biological epitopes through a photocoupling reaction, (2) manipulate the properties of the above hydrogels through photodegradation, photocoupling, and combined photodegradation and photocoupling, (3) culture human mesenchymal cells (hMSCs) on 2D gel surfaces and characterize morphology, cytoskeletal organization, and focal adhesions as a function of elasticity and patterned adhesive ligand presentation, (4) encapsulate hMSCs in 3D and examine their response to material-directed morphological changes and spatially varying adhesive ligand distribution, (5) train a diverse group of undergraduate and graduate students at the interface of polymer chemistry and molecular biology, and (6) disseminate these results to the industrial and academic public to assure maximum impact on fundamental and applied biomaterials chemistry.BROADER IMPACTS: This new class of multifunctional hydrogels will help overcome numerous problems with existing 3D cell culture platforms by providing a facile means for manipulating material functionality and mechanics with spatial and temporal control. These new materials will enable researchers to probe fundamental biological questions via a variety of previously unattainable 3D cell studies. The efficient nature of the gel chemistry will allow its adoption by a wide array of non-experts. These material systems should find applications for basic 3D cell culture, design of tissue engineering matrices, platforms for drug delivery and screening, stand-alone biomaterials implants, as well as other non-biological applications. The multidisciplinary team environment in the Anseth laboratory, coupled with long-standing collaborations with world-class clinical and biological laboratories, will provide an exceptional educational environment for multiple graduate and undergraduate students. The PI and her research group have a history of extensive outreach to high school students and the general public, and the team will work diligently through multiple mechanisms to highlight the impact of biomaterial science in benefiting society.
该提案的目的是充分开发点击化学反应,以创建动态的体外3D细胞培养平台,使研究人员能够探索细胞-材料相互作用如何影响重要的细胞功能。 这些生物材料将使用户控制特定的物理,化学和生物线索,包括细胞微环境在时间和空间。 为了完成这一重大挑战,拟议的工作将利用经典的炔/叠氮化物点击化学,修改,使细胞相容的无铜聚合,合成基本的水凝胶作为一个简化的模拟细胞外基质的存在下的细胞。 然后将使用点击化学的新变体(硫醇-烯光加成反应)来调整凝胶的生物化学功能性,所述硫醇-烯光加成反应与肽化学完全相容,并且允许时空调节的生物表位的引入。 最后,可光降解的连接体将被整合到基础凝胶制剂的交联中,以允许材料的光定向降解。 使用这三个独立的和细胞相容的反应凝胶化,光降解和光耦合,动态生物材料系统将被创建,这将提供新的发现的机会,以探测细胞和它们的微环境之间的动态信息交换。 这项工作的具体目标是:(1)使用正交化学合成基于点击的水凝胶,所述正交化学允许通过光降解和通过光偶联反应引入生物表位来操纵材料性质,(2)通过光降解、光偶联和组合的光降解和光偶联来操纵上述水凝胶的性质,(3)在2D凝胶表面上培养人间充质细胞(hMSC),并表征形态、细胞骨架组织和作为弹性和图案化粘附配体呈递的函数的粘着斑,(4)在3D中包封hMSC并检查它们对材料定向的形态变化和空间变化的粘附配体分布的响应,(5)在高分子化学和分子生物学的界面上培养一批多样化的本科生和研究生,(6)将这些结果传播给工业界和学术界,以确保对基础和应用生物材料化学产生最大的影响。这类新的多功能水凝胶将通过提供一种简便的方法来帮助克服现有3D细胞培养平台的许多问题,通过空间和时间控制来操纵材料功能和力学。 这些新材料将使研究人员能够通过各种以前无法实现的3D细胞研究来探索基本的生物学问题。 凝胶化学的高效性质将允许其被广泛的非专家采用。这些材料系统应该可以应用于基本的3D细胞培养,组织工程基质的设计,药物输送和筛选平台,独立的生物材料植入物以及其他非生物应用。在安赛斯实验室的多学科团队环境,再加上与世界一流的临床和生物实验室的长期合作,将为多个研究生和本科生提供一个特殊的教育环境。PI和她的研究小组有着广泛接触高中生和公众的历史,该团队将通过多种机制努力工作,以突出生物材料科学在造福社会方面的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristi Anseth其他文献

Engineered Hydrogels as Valve Tissue Mimetics That Recapitulate Sexual Dimorphisms Observed in Calcification and Osteopontin Activity
  • DOI:
    10.1080/24748706.2021.1900663
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Megan E. Schroeder;Andrea Gonzalez Rodriquez;Kelly Speckl;Douglas K. Peters;Cierra J. Walker;Brian A. Aguado;Joseph C. Grim;Robert M. Weiss;Kristi Anseth
  • 通讯作者:
    Kristi Anseth
Matrix Stiffness Contributes to Pathological Activation of Cardiac Fibroblasts
  • DOI:
    10.1016/j.bpj.2017.11.635
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Tova Christensen;Kristi Anseth;Leslie Leinwand
  • 通讯作者:
    Leslie Leinwand

Kristi Anseth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kristi Anseth', 18)}}的其他基金

RECODE: Materials-directed differentiation of intestinal organoids of uniform size and shape
RECODE:材料定向分化大小和形状均一的肠道类器官
  • 批准号:
    2033723
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Dynamic and Reversible Control over Biological Signals in Hydrogel Matrices
水凝胶基质中生物信号的动态和可逆控制
  • 批准号:
    1408955
  • 财政年份:
    2014
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Rheological Characterization of Cellularly Remodeled Hydrogel Matrices
细胞重塑水凝胶基质的流变学表征
  • 批准号:
    1236662
  • 财政年份:
    2012
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
National Science Foundation Alan T. Waterman Award
美国国家科学基金会艾伦·T·沃特曼奖
  • 批准号:
    0444771
  • 财政年份:
    2004
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
CUBE: Integrating Biological Engineering into Undergraduate Engineering Education at CU
CUBE:将生物工程融入CU本科工程教育
  • 批准号:
    0343227
  • 财政年份:
    2003
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CAREER: Photocrosslinkable Polymers for Fracture Fixation
职业:用于骨折固定的光交联聚合物
  • 批准号:
    9734236
  • 财政年份:
    1998
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
SGER: Development of Photocurable Degradable Polymers for Orthopedic Applications
SGER:开发用于骨科应用的光固化可降解聚合物
  • 批准号:
    9619331
  • 财政年份:
    1996
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似海外基金

Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
  • 批准号:
    2337176
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Investigating ubiquitination-regulated cell cycle events underpinning malaria transmission
研究泛素化调节的细胞周期事件支撑疟疾传播
  • 批准号:
    MR/Y013174/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
'How is PtdIns(4,5)P2, a membrane lipid messenger, localised and regulated in splicing speckles, a membrane less compartment within the nucleus?
“PtdIns(4,5)P2(一种膜脂信使)如何在剪接斑点(细胞核内的无膜区室)中定位和调节?
  • 批准号:
    BB/Y001648/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
Elucidation of the precise protein transport mechanism regulated by the "heterogeneous" translocase of the outer mitochondrial membrane
阐明线粒体外膜“异质”易位酶调节的精确蛋白质转运机制
  • 批准号:
    23H01814
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of Tumor Microenvironment Network Regulated by Fibrinolysis Inhibitory Factor and Its Therapeutic Application
纤溶抑制因子调控的肿瘤微环境网络的阐明及其治疗应用
  • 批准号:
    23K06612
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The process of self-regulated learning in English language learning from the complex dynamic systems approach
从复杂动态系统方法看英语学习中的自我调节学习过程
  • 批准号:
    23K12243
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Developmental rate regulated by tissue mechanics
发育速率受组织力学调节
  • 批准号:
    23K19363
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Regulatory mechanism of ferroptosis via cystine/glutamate transporter regulated by food derived ingredients
食品衍生成分通过胱氨酸/谷氨酸转运蛋白调节铁死亡的调节机制
  • 批准号:
    23KK0109
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
The impact of thermally-regulated cell wall modifications on Streptococcus pneumoniae pathogenesis
热调节细胞壁修饰对肺炎链球菌发病机制的影响
  • 批准号:
    MR/X009130/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
The study on the relationship between regulated cell death and prion diseases
调节性细胞死亡与朊病毒病关系的研究
  • 批准号:
    22KJ0128
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了