EAGER: Three-Dimensional Printing of Functional Nanobots for Precision Gene Delivery

EAGER:用于精确基因传递的功能纳米机器人的三维打印

基本信息

  • 批准号:
    1937653
  • 负责人:
  • 金额:
    $ 29.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Over 100,000 human diseases are caused by genetic alterations in the genome, and only a very small portion of these diseases can be cured. Gene editing represents a pivotal development in disease therapeutics as a powerful tool to correct defects and mutations within the genome. In particular, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Cas9 represents a paradigm shift in the ability to make precise, targeted genomic change. Recently, a few approaches have been developed for intracellular delivery of CRISPR/Cas9 complexes. While these approaches have some degree of success, it remains extremely challenging to achieve highly effective and efficient intracellular CRISPR/Cas9 delivery. This EArly-concept Grants for Exploratory Research (EAGER) grant supports research to design, manufacture, and test nanobots or nanoscale robots that can precisely target and deliver CRISPR/Cas9 to diseased cells and release the gene-editing agencies in a controlled fashion. The three-dimensional nanoscale printing method for fabricating the nanobots involves multi-materials printing and could be a powerful tool for scalable nanomanufacturing of functional nanoscale machines for a variety of applications. The nanobots could revolutionize gene or drug delivery to repair genetic disorder of many human diseases, which would have a strong impact on human health. The project offers exciting interdisciplinary training that integrates content from manufacturing to biomaterials to nanomachines to therapeutics for a diverse group of graduate and undergraduate students. Nanoscale printing and nanobots are excellent tools for laboratory demonstrations to attract high school students and teachers, and women and underrepresented minority researchers to science and engineering fields.This project aims to investigate the nanomanufacturing processing of a novel nanobot system for targeted gene or drug delivery at the single cell level. The collaborative research team designs the nanobot using biocompatible materials and uses a nanoscale 3D printing system to fabricate it. The nanobot consists of a magnetic nanomotor and a biodegradable nano-cargo. The nanomotor, which is typically 200 nm round and 400 nm long, is 3D printed by embedding iron oxide magnetic nanoparticles in hydrogel. The nano-cargo, which is of similar dimensions, is also 3D printed by encapsulating CRISPR/Cas9 in a biodegradable hydrogel, so that CRISPR/Cas9 can be released through biodegradation once inside the cell. Fundamental research focuses on investigating the effects of material composition and properties, and nanomanufacturing processing parameters on the nanobot performance. The team also tests the efficacy of the nanobot to deliver CRISPR/Cas9 into cancer cells for tumor suppression. The scalability of the nanomanufacturing process is demonstrated through the reproducible fabrication of an array of nanobots.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超过100,000种人类疾病是由基因组中的遗传改变引起的,这些疾病中只有很小一部分可以治愈。基因编辑代表了疾病治疗学的关键发展,是纠正基因组内缺陷和突变的有力工具。特别是,重复的规则间隔短回文重复序列(CRISPR)Cas9代表了进行精确的靶向基因组改变的能力的范式转变。最近,已经开发了一些用于CRISPR/Cas9复合物的细胞内递送的方法。虽然这些方法取得了一定程度的成功,但实现高效和高效的细胞内CRISPR/Cas9递送仍然极具挑战性。EARLY概念的探索性研究赠款(EAGER)资助支持设计,制造和测试纳米机器人或纳米级机器人的研究,这些机器人可以精确地将CRISPR/Cas9靶向并递送到患病细胞,并以受控的方式释放基因编辑机构。用于制造纳米机器人的三维纳米级印刷方法涉及多材料印刷,并且可以是用于各种应用的功能性纳米级机器的可扩展纳米制造的强大工具。纳米机器人可以彻底改变基因或药物输送,以修复许多人类疾病的遗传紊乱,这将对人类健康产生重大影响。该项目提供了令人兴奋的跨学科培训,为不同的研究生和本科生群体整合了从制造到生物材料到纳米机器到治疗学的内容。纳米打印和纳米机器人是吸引高中生和教师、女性和少数民族研究人员进入科学和工程领域的实验室演示的绝佳工具。本项目旨在研究一种新型纳米机器人系统的纳米制造过程,该系统用于在单细胞水平上靶向基因或药物输送。合作研究团队使用生物相容性材料设计纳米机器人,并使用纳米级3D打印系统制造它。纳米机器人由磁性纳米颗粒和可生物降解的纳米货物组成。纳米颗粒通常为200 nm圆形和400 nm长,通过将氧化铁磁性纳米颗粒嵌入水凝胶中进行3D打印。具有类似尺寸的纳米货物也是通过将CRISPR/Cas9封装在可生物降解的水凝胶中进行3D打印的,因此CRISPR/Cas9一旦进入细胞内就可以通过生物降解释放。 基础研究的重点是研究材料的组成和性质,以及纳米制造工艺参数对纳米机器人性能的影响。该团队还测试了纳米机器人将CRISPR/Cas9递送到癌细胞中以抑制肿瘤的功效。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Controlled Growth Factor Release in 3D‐Printed Hydrogels
  • DOI:
    10.1002/adhm.201900977
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Pengrui Wang;D. Berry;A. Moran;F. He;Trevor Tam;Luwen Chen;Shaochen Chen
  • 通讯作者:
    Pengrui Wang;D. Berry;A. Moran;F. He;Trevor Tam;Luwen Chen;Shaochen Chen
Bioprinting of dual ECM scaffolds encapsulating limbal stem/progenitor cells in active and quiescent statuses.
  • DOI:
    10.1088/1758-5090/ac1992
  • 发表时间:
    2021-08-13
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Zhong Z;Balayan A;Tian J;Xiang Y;Hwang HH;Wu X;Deng X;Schimelman J;Sun Y;Ma C;Dos Santos A;You S;Tang M;Yao E;Shi X;Steinmetz NF;Deng SX;Chen S
  • 通讯作者:
    Chen S
3D Printing of a Biocompatible Double Network Elastomer with Digital Control of Mechanical Properties
  • DOI:
    10.1002/adfm.201910391
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Pengrui Wang;D. Berry;Zhaoqiang Song;Wisarut Kiratitanaporn;Jacob Schimelman;A. Moran;F. He;B. Xi;S. Cai;Shaochen Chen
  • 通讯作者:
    Pengrui Wang;D. Berry;Zhaoqiang Song;Wisarut Kiratitanaporn;Jacob Schimelman;A. Moran;F. He;B. Xi;S. Cai;Shaochen Chen
High throughput direct 3D bioprinting in multiwell plates
  • DOI:
    10.1088/1758-5090/ab89ca
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Hwang, Henry H.;You, Shangting;Chen, Shaochen
  • 通讯作者:
    Chen, Shaochen
Rapid 3D bioprinting of a multicellular model recapitulating pterygium microenvironment.
  • DOI:
    10.1016/j.biomaterials.2022.121391
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    14
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaochen Chen其他文献

Challenges and opportunities in developing nanoparticles for detoxification
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Maling Gou;Jana Zaidan;Kang Zhang;Shaochen Chen;
  • 通讯作者:
Toward a 3D bio-printed model of placental-villous transport: Growth and viability of human primary placental cell-types on hydrogel scaffolds
  • DOI:
    10.1016/j.placenta.2019.06.341
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chandana Tekkatte;Claire Yu;Xuanyi Ma;Henry H. Hwang;Omar Farah;Ching-Wen Chang;Mana M. Parast;Shaochen Chen;Louise C. Laurent
  • 通讯作者:
    Louise C. Laurent
Laser Processing of Natural Biomaterials
天然生物材料的激光加工
  • DOI:
    10.1007/978-3-642-41341-4_10
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Wande Zhang;Peter H. Chung;A. Zhang;Shaochen Chen
  • 通讯作者:
    Shaochen Chen
Bioprinting of Complex Vascularized Tissues.
复杂血管组织的生物打印。
  • DOI:
    10.1007/978-1-0716-0611-7_14
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Zhu;Claire Yu;Bingjie Sun;Shaochen Chen
  • 通讯作者:
    Shaochen Chen
LASER MICROMACHINING OF A BIODEGRADABLE POLYMER
可生物降解聚合物的激光微加工
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Kancharla;Shaochen Chen;D. Zamzow;D. P. Baldwin
  • 通讯作者:
    D. P. Baldwin

Shaochen Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shaochen Chen', 18)}}的其他基金

BRITE Fellow: Intelligent Nanoscale 3D Biomanufacturing for Human-on-a-Chip
BRITE 研究员:用于芯片人体的智能纳米级 3D 生物制造
  • 批准号:
    2135720
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Rapid 3D Bioprinting of Engineered Bionic Corals towards Scalable Biofuel Manufacturing
工程仿生珊瑚的快速 3D 生物打印可实现可扩展的生物燃料制造
  • 批准号:
    1907434
  • 财政年份:
    2019
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
EAGER: Understanding Nano-Cardio Interactions Using 3D Bioprinted Human Heart Tissue
EAGER:使用 3D 生物打印人体心脏组织了解纳米心脏相互作用
  • 批准号:
    1903933
  • 财政年份:
    2019
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
EAGER: Scanningless 3D Bioprinting of Multiple Biomaterials and Cells for Biomimetic Vascular Network
EAGER:用于仿生血管网络的多种生物材料和细胞的非扫描 3D 生物打印
  • 批准号:
    1644967
  • 财政年份:
    2016
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
EAGER: Cybermanufacturing: Cloud-based, Rapid, Microscale 3D Bioprinting
EAGER:网络制造:基于云的快速微型 3D 生物打印
  • 批准号:
    1547005
  • 财政年份:
    2015
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Cell Modulation Using Biomaterials with a Negative Poisson's Ratio
使用具有负泊松比的生物材料进行细胞调节
  • 批准号:
    1332681
  • 财政年份:
    2013
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Nano-/femtosecond Laser Processing of Gas Impregnated Polymer for Biomedical Applications
合作研究:用于生物医学应用的气体浸渍聚合物的纳秒/飞秒激光加工
  • 批准号:
    1130894
  • 财政年份:
    2011
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
SNM: Continuous and Scalable Nanomanufacturing for 3-Dimensional Functional Biomedical Devices
SNM:连续且可扩展的 3 维功能生物医学设备纳米制造
  • 批准号:
    1120795
  • 财政年份:
    2011
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Surface Plasmon-Assisted Nanolithography
表面等离子体辅助纳米光刻
  • 批准号:
    1109591
  • 财政年份:
    2010
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Massive Parallel Laser Direct-Write of Sub-micron Dent Array for Quantum Leap of Fatigue Performance
合作研究:大规模并行激光直写亚微米凹痕阵列,实现疲劳性能的量子飞跃
  • 批准号:
    1106487
  • 财政年份:
    2010
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant

相似海外基金

Three dimensional material flow visualization in dissimilar friction stir welding by X-ray transmission imaging
通过 X 射线透射成像实现异种材料搅拌摩擦焊中的三维材料流动可视化
  • 批准号:
    24K17532
  • 财政年份:
    2024
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
I-Corps: Vision analysis system using inferred three-dimensional data to analyze and correct a user’s pose in relation to 3D space
I-Corps:视觉分析系统,使用推断的三维数据来分析和纠正用户相对于 3D 空间的姿势
  • 批准号:
    2403992
  • 财政年份:
    2024
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
3DIr4E: Three-Dimensional low Ir loading anodes For proton exchange membrane water Electrolyzers
3DIr4E:用于质子交换膜水电解槽的三维低 Ir 负载阳极
  • 批准号:
    EP/Z001382/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Fellowship
Three-Dimensional Multilayer Nanomagnetic Arrays for Neuromorphic Low-Energy Magnonic Processing
用于神经形态低能磁处理的三维多层纳米磁性阵列
  • 批准号:
    EP/Y003276/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Research Grant
Three-dimensional solar-energy-driven hydrogen generation from ammonia
三维太阳能驱动的氨制氢
  • 批准号:
    DP240102787
  • 财政年份:
    2024
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Discovery Projects
Extremely efficient fully three-dimensional hydrodynamic simulations of supernova remnants for the new age of microcalorimetric X-ray astronomy
针对微量热 X 射线天文学新时代的超新星遗迹进行极其高效的全三维流体动力学模拟
  • 批准号:
    24K07092
  • 财政年份:
    2024
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Advancing AI in Science Education (AASE): A Comprehensive Approach to Equity, Inclusion, and Three-Dimensional Learning
会议:推进科学教育中的人工智能 (AASE):公平、包容和三维学习的综合方法
  • 批准号:
    2332964
  • 财政年份:
    2024
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: The three-dimensional biomechanics of the grasping big toe among higher primates
博士论文研究:高等灵长类抓握大脚趾的三维生物力学
  • 批准号:
    2341368
  • 财政年份:
    2024
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Development of PU signal sampling technique of fluxgate magnetometer and progressive comprehension of three-dimensional magnetic field in space
磁通门磁力计PU信号采样技术的发展与空间三维磁场的渐进理解
  • 批准号:
    23H01230
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of urodynamics analysis method using three-dimensional images
利用三维图像的尿动力学分析方法的开发
  • 批准号:
    23K08782
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了