EAGER: Three-Dimensional Printing of Functional Nanobots for Precision Gene Delivery

EAGER:用于精确基因传递的功能纳米机器人的三维打印

基本信息

  • 批准号:
    1937653
  • 负责人:
  • 金额:
    $ 29.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Over 100,000 human diseases are caused by genetic alterations in the genome, and only a very small portion of these diseases can be cured. Gene editing represents a pivotal development in disease therapeutics as a powerful tool to correct defects and mutations within the genome. In particular, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Cas9 represents a paradigm shift in the ability to make precise, targeted genomic change. Recently, a few approaches have been developed for intracellular delivery of CRISPR/Cas9 complexes. While these approaches have some degree of success, it remains extremely challenging to achieve highly effective and efficient intracellular CRISPR/Cas9 delivery. This EArly-concept Grants for Exploratory Research (EAGER) grant supports research to design, manufacture, and test nanobots or nanoscale robots that can precisely target and deliver CRISPR/Cas9 to diseased cells and release the gene-editing agencies in a controlled fashion. The three-dimensional nanoscale printing method for fabricating the nanobots involves multi-materials printing and could be a powerful tool for scalable nanomanufacturing of functional nanoscale machines for a variety of applications. The nanobots could revolutionize gene or drug delivery to repair genetic disorder of many human diseases, which would have a strong impact on human health. The project offers exciting interdisciplinary training that integrates content from manufacturing to biomaterials to nanomachines to therapeutics for a diverse group of graduate and undergraduate students. Nanoscale printing and nanobots are excellent tools for laboratory demonstrations to attract high school students and teachers, and women and underrepresented minority researchers to science and engineering fields.This project aims to investigate the nanomanufacturing processing of a novel nanobot system for targeted gene or drug delivery at the single cell level. The collaborative research team designs the nanobot using biocompatible materials and uses a nanoscale 3D printing system to fabricate it. The nanobot consists of a magnetic nanomotor and a biodegradable nano-cargo. The nanomotor, which is typically 200 nm round and 400 nm long, is 3D printed by embedding iron oxide magnetic nanoparticles in hydrogel. The nano-cargo, which is of similar dimensions, is also 3D printed by encapsulating CRISPR/Cas9 in a biodegradable hydrogel, so that CRISPR/Cas9 can be released through biodegradation once inside the cell. Fundamental research focuses on investigating the effects of material composition and properties, and nanomanufacturing processing parameters on the nanobot performance. The team also tests the efficacy of the nanobot to deliver CRISPR/Cas9 into cancer cells for tumor suppression. The scalability of the nanomanufacturing process is demonstrated through the reproducible fabrication of an array of nanobots.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超过100,000种人类疾病是由基因组的遗传改变引起的,只有一小部分这些疾病才能治愈。基因编辑代表了疾病疗法的关键发展,作为纠正基因组中缺陷和突变的强大工具。尤其是,群集的定期间隔短的短粒子重复序列(CRISPR)CAS9代表了进行精确,有针对性基因组变化的能力的范式转移。最近,已经开发了一些用于细胞内CRISPR/CAS9复合物的方法。尽管这些方法取得了一定的成功,但要实现高效和有效的细胞内CRISPR/CAS9的交付仍然非常具有挑战性。这项早期概念授予探索性研究(急切)赠款支持研究,制造和测试纳米机器人或纳米级机器人,这些机器人可以精确地靶向并将CRISPR/CAS9提供给患病的细胞,并以受控的方式释放基因编辑机构。用于制造纳米机器人的三维纳米级打印方法涉及多物质打印,并且可能是用于用于各种应用的功能性纳米级机器的可扩展纳米制造的功能强大工具。纳米机器人可以彻底改变基因或药物输送来修复许多人类疾病的遗传疾病,这将对人类健康产生强大的影响。该项目提供了令人兴奋的跨学科培训,该培训将从制造业到生物材料再到纳米机器再到纳米机器的内容,再到多样化的研究生和本科生的疗法。纳米级印刷和纳米机器人是实验室演示的绝佳工具,可吸引高中生和老师,以及妇女和代表性的少数族裔研究人员,用于科学和工程领域。该项目旨在调查单个细胞水平靶向基因或药物输送的新型纳米机器人系统的纳米制造处理。协作研究团队使用生物相容性材料设计了纳米机器人,并使用纳米级3D打印系统来制造它。纳米机器人由磁性纳米运动和可生物降解的纳米碳组成。纳米运动量通常为200 nm,长400 nm,是通过将氧化铁磁性纳米颗粒嵌入水凝胶中的3D。具有相似尺寸的纳米货物也是通过将CRISPR/CAS9封装在可生物降解水凝胶中的3D打印的,因此CRISPR/CAS9可以通过在细胞内部的生物降解释放。 基本研究的重点是研究材料组成和特性的影响,以及纳米制造处理参数对纳米机器人性能的影响。该小组还测试了纳米机器人将CRISPR/CAS9输送到癌细胞中以进行肿瘤抑制的功效。纳米制造过程的可扩展性通过可再现的纳米机器人的可再现制造证明了这一点。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子和更广泛的影响评估审查标准来评估值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Controlled Growth Factor Release in 3D‐Printed Hydrogels
  • DOI:
    10.1002/adhm.201900977
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Pengrui Wang;D. Berry;A. Moran;F. He;Trevor Tam;Luwen Chen;Shaochen Chen
  • 通讯作者:
    Pengrui Wang;D. Berry;A. Moran;F. He;Trevor Tam;Luwen Chen;Shaochen Chen
Bioprinting of dual ECM scaffolds encapsulating limbal stem/progenitor cells in active and quiescent statuses.
  • DOI:
    10.1088/1758-5090/ac1992
  • 发表时间:
    2021-08-13
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Zhong Z;Balayan A;Tian J;Xiang Y;Hwang HH;Wu X;Deng X;Schimelman J;Sun Y;Ma C;Dos Santos A;You S;Tang M;Yao E;Shi X;Steinmetz NF;Deng SX;Chen S
  • 通讯作者:
    Chen S
3D Printing of a Biocompatible Double Network Elastomer with Digital Control of Mechanical Properties
  • DOI:
    10.1002/adfm.201910391
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Pengrui Wang;D. Berry;Zhaoqiang Song;Wisarut Kiratitanaporn;Jacob Schimelman;A. Moran;F. He;B. Xi;S. Cai;Shaochen Chen
  • 通讯作者:
    Pengrui Wang;D. Berry;Zhaoqiang Song;Wisarut Kiratitanaporn;Jacob Schimelman;A. Moran;F. He;B. Xi;S. Cai;Shaochen Chen
High throughput direct 3D bioprinting in multiwell plates
  • DOI:
    10.1088/1758-5090/ab89ca
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Hwang, Henry H.;You, Shangting;Chen, Shaochen
  • 通讯作者:
    Chen, Shaochen
Rapid 3D bioprinting of a multicellular model recapitulating pterygium microenvironment.
  • DOI:
    10.1016/j.biomaterials.2022.121391
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    14
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaochen Chen其他文献

Toward a 3D bio-printed model of placental-villous transport: Growth and viability of human primary placental cell-types on hydrogel scaffolds
  • DOI:
    10.1016/j.placenta.2019.06.341
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chandana Tekkatte;Claire Yu;Xuanyi Ma;Henry H. Hwang;Omar Farah;Ching-Wen Chang;Mana M. Parast;Shaochen Chen;Louise C. Laurent
  • 通讯作者:
    Louise C. Laurent
Bioprinting of Complex Vascularized Tissues.
复杂血管组织的生物打印。
  • DOI:
    10.1007/978-1-0716-0611-7_14
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Zhu;Claire Yu;Bingjie Sun;Shaochen Chen
  • 通讯作者:
    Shaochen Chen
Laser Processing of Natural Biomaterials
天然生物材料的激光加工
  • DOI:
    10.1007/978-3-642-41341-4_10
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Wande Zhang;Peter H. Chung;A. Zhang;Shaochen Chen
  • 通讯作者:
    Shaochen Chen
LASER MICROMACHINING OF A BIODEGRADABLE POLYMER
可生物降解聚合物的激光微加工
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Kancharla;Shaochen Chen;D. Zamzow;D. P. Baldwin
  • 通讯作者:
    D. P. Baldwin
Tuning the absorptions of Au nanospheres on a microshell by photo-deformation
通过光变形调节微壳上金纳米球的吸收
  • DOI:
    10.1088/0957-4484/17/18/012
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Li;Tingji Tang;Shaochen Chen
  • 通讯作者:
    Shaochen Chen

Shaochen Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shaochen Chen', 18)}}的其他基金

BRITE Fellow: Intelligent Nanoscale 3D Biomanufacturing for Human-on-a-Chip
BRITE 研究员:用于芯片人体的智能纳米级 3D 生物制造
  • 批准号:
    2135720
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Rapid 3D Bioprinting of Engineered Bionic Corals towards Scalable Biofuel Manufacturing
工程仿生珊瑚的快速 3D 生物打印可实现可扩展的生物燃料制造
  • 批准号:
    1907434
  • 财政年份:
    2019
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
EAGER: Understanding Nano-Cardio Interactions Using 3D Bioprinted Human Heart Tissue
EAGER:使用 3D 生物打印人体心脏组织了解纳米心脏相互作用
  • 批准号:
    1903933
  • 财政年份:
    2019
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
EAGER: Scanningless 3D Bioprinting of Multiple Biomaterials and Cells for Biomimetic Vascular Network
EAGER:用于仿生血管网络的多种生物材料和细胞的非扫描 3D 生物打印
  • 批准号:
    1644967
  • 财政年份:
    2016
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
EAGER: Cybermanufacturing: Cloud-based, Rapid, Microscale 3D Bioprinting
EAGER:网络制造:基于云的快速微型 3D 生物打印
  • 批准号:
    1547005
  • 财政年份:
    2015
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Cell Modulation Using Biomaterials with a Negative Poisson's Ratio
使用具有负泊松比的生物材料进行细胞调节
  • 批准号:
    1332681
  • 财政年份:
    2013
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Nano-/femtosecond Laser Processing of Gas Impregnated Polymer for Biomedical Applications
合作研究:用于生物医学应用的气体浸渍聚合物的纳秒/飞秒激光加工
  • 批准号:
    1130894
  • 财政年份:
    2011
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
SNM: Continuous and Scalable Nanomanufacturing for 3-Dimensional Functional Biomedical Devices
SNM:连续且可扩展的 3 维功能生物医学设备纳米制造
  • 批准号:
    1120795
  • 财政年份:
    2011
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Surface Plasmon-Assisted Nanolithography
表面等离子体辅助纳米光刻
  • 批准号:
    1109591
  • 财政年份:
    2010
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Massive Parallel Laser Direct-Write of Sub-micron Dent Array for Quantum Leap of Fatigue Performance
合作研究:大规模并行激光直写亚微米凹痕阵列,实现疲劳性能的量子飞跃
  • 批准号:
    1106487
  • 财政年份:
    2010
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant

相似国自然基金

宽视角大尺寸裸眼真三维视频显示技术研究
  • 批准号:
    62335002
  • 批准年份:
    2023
  • 资助金额:
    241 万元
  • 项目类别:
    重点项目
较大曲率的大尺寸镜面表面高精度三维测量关键方法的研究
  • 批准号:
    52365067
  • 批准年份:
    2023
  • 资助金额:
    32.00 万元
  • 项目类别:
    地区科学基金项目
超薄三维拓扑绝缘体的有限尺寸效应和量子自旋霍尔态的探测
  • 批准号:
    12274445
  • 批准年份:
    2022
  • 资助金额:
    56.00 万元
  • 项目类别:
    面上项目
超音速分离器凝结两相三场耦合机理及其液滴尺寸调控
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
超薄三维拓扑绝缘体的有限尺寸效应和量子自旋霍尔态的探测
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: Quantum Manufacturing: Three-Dimensional Printing of Meta-Photonic Elements for Chip-based Quantum Devices
EAGER:量子制造:基于芯片的量子器件的元光子元件的三维打印
  • 批准号:
    2240414
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
EAGER: Prototyping three-dimensional printing of sand columns for granular physics experiments
EAGER:用于颗粒物理实验的沙柱三维打印原型
  • 批准号:
    2136301
  • 财政年份:
    2021
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
EAGER: SHF: Three-Dimensional Electronics Integration Facilitated by Molecular Assembly
EAGER:SHF:分子组装促进三维电子集成
  • 批准号:
    1748459
  • 财政年份:
    2017
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
BRAIN EAGER: Three Dimensional Optical Control of Neuronal Circuits during Behavior
BRAIN EAGER:行为过程中神经元回路的三维光学控制
  • 批准号:
    1451015
  • 财政年份:
    2014
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
EAGER: Study of Casimir Force Engineering by Modeling and Implementing Novel Three-dimensional Structures
EAGER:通过建模和实现新型三维结构来研究卡西米尔力工程
  • 批准号:
    1206155
  • 财政年份:
    2012
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了