Quantum Effects in Low-Dimensional Systems
低维系统中的量子效应
基本信息
- 批准号:1007028
- 负责人:
- 金额:$ 28.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis award supports theoretical research and education in condensed matter physics. The two central research topics are (i) strongly fluctuating quantum magnetism, typically in low dimensions, and (ii) transport and interfacial physics in graphene and graphite. The major objective in the magnetism work is to characterize the physics of quantum-disordered phases using several approaches. One such approach is through the use of quantum entanglement spectra, which have been shown to yield detailed information regarding the edge excitations of fractional quantum Hall effect states. This line of analysis exploits some deep connections between the fractional quantum Hall effect and spin chains. Partitioning the fractional quantum Hall effect wavefunctions in angular momentum space is equivalent to a reciprocal momentum space partitioning of the corresponding spin chain wavefunctions, and reveals information about the bulk excitation spectra in certain gapless systems. Another direction of this research is in the generalization of valence bond solid states and an investigation of their properties, such as the "hidden" string order in the S=1 Affleck, Kennedy, Lieb, and Tasaki chain, which is emblematic of the Haldane phase. Generalizations to SU(N) spins and to singlets extended over N-site simplices will be investigated, along with corresponding higher-dimensional fractional quantum Hall effect wavefunctions.The work on graphene will focus on junctions and interfaces in graphene and graphite, including junctions between monolayer and bilayer graphene, and also with graphane. The effects of periodic potentials will be studied, both with and without external fields. In graphite, the c-axis transport of the turbostratic material will be modeled, along with the electronic structure of crystalline dislocations.The educational elements of this work include the training of a graduate student and the development of detailed, book-quality, lecture notes for graduate students and advanced undergraduates.NONTECHNICAL SUMMARYThis award supports theoretical research and education in condensed matter physics. The research effort will focus on two main topics: (i) magnetism at the microscopic level, and (ii) graphene, which is a one-atom-thick planar sheet of carbon atoms. A common thread is that many of the systems studied are intrinsically one-dimensional or two-dimensional.Low-dimensional quantum magnetism has provided the condensed matter community with some remarkable and compelling paradigms of "quantum-disordered" phases - states of matter where quantum mechanical fluctuations, even at the lowest possible temperatures, lead to a "melting" of classical order. At issue is how to characterize these disordered phases. A recent approach uses entanglement, an intrinsically quantum-mechanical concept, to characterize such states. Deep connections between one-dimensional quantum magnets and two-dimensional electron gases in a strong magnetic field will also be exploited and investigated.Graphene has an unusual electronic structure, in which charge carrying excitations behave as if they are massless, reminiscent of photons, the quanta of light. The research effort here will focus on large-scale inhomogeneities in graphene, including interfaces between single and multilayer graphene, and disruptions in the stacking pattern of graphite. In both cases, the consequences for electronic conduction will be investigated.This is fundamental research that contributes to the intellectual foundations of future device technologies. Graphene, in particular, has unique properties that make it a promising material for various applications including future electronic devices.The educational aspects of this proposal include the training of a PhD student in physics, and the further development of an extensive collection of detailed, book-quality lecture notes for advanced undergraduates and physics graduate students.
该奖项支持凝聚态物理学的理论研究和教育。 两个中心研究课题是(i)强烈波动的量子磁性,通常在低维,和(ii)在石墨烯和石墨的运输和界面物理。 磁学工作的主要目标是使用几种方法来表征量子无序相的物理特性。 一种这样的方法是通过使用量子纠缠谱,其已被证明产生关于分数量子霍尔效应态的边缘激发的详细信息。 这种分析方法利用了分数量子霍尔效应和自旋链之间的一些深层联系。 在角动量空间中划分分数量子霍尔效应波函数等价于相应自旋链波函数的倒易动量空间划分,并揭示了某些无带隙系统中体激发谱的信息。 这项研究的另一个方向是推广价键固态和研究它们的性质,例如S=1的阿弗莱克、肯尼迪、利布和田崎链中的“隐藏”弦序,这是哈勒相的象征。 我们将研究SU(N)自旋和N位单形上的单线态的推广,沿着相应的高维分数量子霍尔效应波函数。石墨烯的工作将集中在石墨烯和石墨中的结和界面,包括单层和双层石墨烯之间的结,以及与石墨烷的结。 周期性电位的影响将被研究,无论有和没有外部领域。 在石墨中,将模拟乱层材料的c轴输运,沿着晶体位错的电子结构。这项工作的教育内容包括研究生的培训,以及为研究生和高年级本科生编写详细的、书本质量的讲义。非技术性总结该奖项支持凝聚态物理学的理论研究和教育。 研究工作将集中在两个主要课题上:(i)微观层面的磁性,以及(ii)石墨烯,这是一个原子厚的碳原子平面片。 一个共同的线索是,许多研究的系统本质上是一维或二维的,低维量子磁学为凝聚态社区提供了一些引人注目的“量子无序”相的范例-物质的量子力学波动,即使在最低的温度下,也会导致经典秩序的“熔化”。 争论的焦点是如何表征这些无序相。 最近的一种方法使用纠缠,一个内在的量子力学概念,来表征这种状态。 在强磁场中,一维量子磁体和二维电子气体之间的深层联系也将被探索和研究。石墨烯具有不寻常的电子结构,其中携带电荷的激发表现得好像它们是无质量的,让人想起光子,光的量子。 这里的研究工作将集中在石墨烯的大规模不均匀性,包括单层和多层石墨烯之间的界面,以及石墨堆叠模式的中断。 在这两种情况下,电子传导的后果将被调查。这是基础研究,有助于未来设备技术的知识基础。特别是石墨烯,其独特的性质使其成为包括未来电子设备在内的各种应用的有前途的材料。该提案的教育方面包括培养物理学博士生,并进一步为高级本科生和物理学研究生开发大量详细的书籍质量的讲义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Arovas其他文献
Daniel Arovas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Arovas', 18)}}的其他基金
Presidential Young Investigator Award
总统青年研究员奖
- 批准号:
8957993 - 财政年份:1989
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
水环境中新兴污染物类抗生素效应(Like-Antibiotic Effects,L-AE)作用机制研究
- 批准号:21477024
- 批准年份:2014
- 资助金额:86.0 万元
- 项目类别:面上项目
相似海外基金
Realization of ultra-fast and low-power-consumption method for magnetization control utilizing quantum effects of ferromagnetic materials
利用铁磁材料量子效应实现超快速、低功耗磁化控制方法
- 批准号:
19K21961 - 财政年份:2019
- 资助金额:
$ 28.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Topological Effects in Low-dimensional Quantum Gases
低维量子气体的拓扑效应
- 批准号:
318595308 - 财政年份:2016
- 资助金额:
$ 28.5万 - 项目类别:
Research Units
Quantum Effects on Monte Carlo Simulations of Low Energy Electrons
低能电子蒙特卡罗模拟的量子效应
- 批准号:
481440-2015 - 财政年份:2015
- 资助金额:
$ 28.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
The study of quantum effects in low temperature devices and materials
低温器件和材料中的量子效应研究
- 批准号:
238482-2010 - 财政年份:2014
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
CDS&E: Quantum Monte Carlo Methods for Electron Correlations and Spin-Orbit Effects in Low-Dimensional Materials
CDS
- 批准号:
1410639 - 财政年份:2014
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
The study of quantum effects in low temperature devices and materials
低温器件和材料中的量子效应研究
- 批准号:
238482-2010 - 财政年份:2013
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
The study of quantum effects in low temperature devices and materials
低温器件和材料中的量子效应研究
- 批准号:
238482-2010 - 财政年份:2012
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
The study of quantum effects in low temperature devices and materials
低温器件和材料中的量子效应研究
- 批准号:
238482-2010 - 财政年份:2011
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
The study of quantum effects in low temperature devices and materials
低温器件和材料中的量子效应研究
- 批准号:
238482-2010 - 财政年份:2010
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
The study of quantum effects in low temperature devices and materials
低温器件和材料中的量子效应研究
- 批准号:
238482-2005 - 财政年份:2009
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




