Envelope Models and Methods for Efficient Multivariate Analysis with Applications to Tissue Engineering
用于高效多元分析的包络模型和方法及其在组织工程中的应用
基本信息
- 批准号:1007547
- 负责人:
- 金额:$ 30.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator and his colleagues propose to develop a new class of statistical tools -- called envelopes -- for studying multivariate data. Enveloping is based on novel parameterizations that use reducing subspaces to link a location matrix L with a dispersion matrix D. For instance, the outer envelope is the smallest reducing subspace of D that contains the span of L, while the inner envelope is the largest reducing subspace of D that is contained within the span of L. In multivariate linear regression, the maximum likelihood estimator of the coefficient matrix L based on an envelope model can be substantially less variable than the maximum likelihood estimator under the classical normal model, particularly when the mean function varies in directions that are orthogonal to the directions of maximum variation for the dispersion matrix. It is expected that similar results will hold in other multivariate areas, like discriminant analysis and functional data analysis. Enveloping is a new paradigm for addressing multivariate statistical problems that has the potential to facilitate interpretation, to improve analyses that might otherwise be tenuous and to produce truly massive gains in efficiency relative to standard methods.Technological advances in many scientific fields have been followed by configurations of multivariate data that strain or are beyond the capabilities of standard statistical theory and methods. More than ever before, understanding experimental evidence and exploring scientific hypotheses require methods to meaningfully study contemporary data. This is particularly true in the life sciences, where the ability to extract the relevant information from a complex body of data is paramount. The investigator and his colleagues plan to study a new class of multivariate statistical methods that are capable of efficiently extracting relevant information for a given purpose from complex data. For instance, the overarching goal in tissue engineering is to gain the ability to replace damaged human connective tissue with viable tissue patches fabricated in vitro. Current technology has failed to reach this goal because tissues grown in vitro lack adequate mechanical integrity for in vivo applications. The mechanical integrity of tissues is controlled by a network of several hundred intercellular signaling proteins that shape long-term tissue growth and can be measured by mass spectrometry. The statistical objective here is to identify the most important stimuli and to extract the relevant information by reducing the signaling proteins to a few key protein indices that can be monitored during in vitro growth and directed by the external stimuli.
研究人员和他的同事们建议开发一类新的统计工具-称为信封-用于研究多变量数据。 包络是基于新的参数化,使用减少子空间链接的位置矩阵L与色散矩阵D。例如,外包络是包含L的跨度的D的最小约简子空间,而内包络是包含在L的跨度内的D的最大约简子空间。 在多元线性回归中,基于包络模型的系数矩阵L的最大似然估计量的可变性可以比经典正态模型下的最大似然估计量小得多,特别是当均值函数在与分散矩阵的最大变化方向正交的方向上变化时。 预计类似的结果将在其他多变量领域,如判别分析和函数数据分析。 包络分析是一种新的处理多元统计问题的方法,它有可能促进解释,改善原本可能是脆弱的分析,并产生相对于标准方法的真正巨大的效率增益。许多科学领域的技术进步之后,多元数据的配置应变或超出了标准统计理论和方法的能力。理解实验证据和探索科学假设比以往任何时候都更需要有意义地研究当代数据的方法。在生命科学中尤其如此,从复杂的数据中提取相关信息的能力至关重要。 研究人员和他的同事们计划研究一类新的多元统计方法,这些方法能够从复杂的数据中有效地提取用于给定目的的相关信息。 例如,组织工程的首要目标是获得用体外制造的活组织补片替换受损的人类结缔组织的能力。目前的技术未能达到这一目标,因为在体外生长的组织缺乏足够的机械完整性,在体内应用。组织的机械完整性由数百种细胞间信号蛋白组成的网络控制,这些蛋白形成长期的组织生长,并且可以通过质谱法进行测量。 这里的统计目标是识别最重要的刺激,并通过将信号蛋白减少到几个关键蛋白质指数来提取相关信息,这些指数可以在体外生长过程中进行监测并由外部刺激指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralph Cook其他文献
Administrative Records Experiment in 2000 ( AREX 2000 ) Outcomes Evaluation FINAL REPORT
2000 年行政记录实验 (AREX 2000) 结果评估最终报告
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Dawson;Joseph Conklin;K. Conklin;Gary Chappell;Ralph Cook;Ann Daniele;Matt Falkenstein - 通讯作者:
Matt Falkenstein
Ralph Cook的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralph Cook', 18)}}的其他基金
Doctoral Dissertation Research: Envelope Models and Methods
博士论文研究:信封模型和方法
- 批准号:
1156026 - 财政年份:2012
- 资助金额:
$ 30.99万 - 项目类别:
Standard Grant
Collaborative Research: Model-Based and Model-Free Dimension Reduction with Applications to Bioinformatics
合作研究:基于模型和无模型的降维及其在生物信息学中的应用
- 批准号:
0704098 - 财政年份:2007
- 资助金额:
$ 30.99万 - 项目类别:
Standard Grant
Collaborative Research: Sufficient Dimension Reduction for High Dimensional Data with Applications in Bioinformatics
合作研究:高维数据的充分降维及其在生物信息学中的应用
- 批准号:
0405360 - 财政年份:2004
- 资助金额:
$ 30.99万 - 项目类别:
Continuing Grant
Foundations of Dimension Reduction and Graphics
降维和图形基础
- 批准号:
0103983 - 财政年份:2001
- 资助金额:
$ 30.99万 - 项目类别:
Continuing Grant
Graphical Paradigms for Teaching and Using Statistics
统计教学和使用的图形范式
- 批准号:
9652887 - 财政年份:1997
- 资助金额:
$ 30.99万 - 项目类别:
Continuing Grant
Graphical Paradigms for Teaching and Using Statistics
统计教学和使用的图形范式
- 批准号:
9354678 - 财政年份:1993
- 资助金额:
$ 30.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Statistical Graphics: Foundations of Regression Graphics
数学科学:统计图形:回归图形基础
- 批准号:
9212413 - 财政年份:1992
- 资助金额:
$ 30.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Statistical Graphics: Diagnostics andInference
数学科学:统计图形:诊断和推理
- 批准号:
9001298 - 财政年份:1990
- 资助金额:
$ 30.99万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2415067 - 财政年份:2024
- 资助金额:
$ 30.99万 - 项目类别:
Continuing Grant
SBIR Phase I: Methods for Embedding User Data into 3D Generative AI Computer-aided-Design Models
SBIR 第一阶段:将用户数据嵌入 3D 生成式 AI 计算机辅助设计模型的方法
- 批准号:
2335491 - 财政年份:2024
- 资助金额:
$ 30.99万 - 项目类别:
Standard Grant
Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
- 批准号:
2347546 - 财政年份:2024
- 资助金额:
$ 30.99万 - 项目类别:
Standard Grant
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
- 批准号:
2905812 - 财政年份:2023
- 资助金额:
$ 30.99万 - 项目类别:
Studentship
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
- 批准号:
2310450 - 财政年份:2023
- 资助金额:
$ 30.99万 - 项目类别:
Standard Grant
Construction of models and analysis/design methods for molecular communication systems considering the distance between molecular robots
考虑分子机器人间距离的分子通信系统模型构建及分析/设计方法
- 批准号:
22KJ2683 - 财政年份:2023
- 资助金额:
$ 30.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
$ 30.99万 - 项目类别:
Standard Grant
Development of mathematics teaching materials, teaching methods, and curricula to foster the ability to create and analyze mathematical models
开发数学教材、教学方法和课程,培养创建和分析数学模型的能力
- 批准号:
23H01028 - 财政年份:2023
- 资助金额:
$ 30.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of stable coastal blue carbon distribution survey methods using satellites, observations, models, and AI
利用卫星、观测、模型和人工智能开发稳定的沿海蓝碳分布调查方法
- 批准号:
23H01516 - 财政年份:2023
- 资助金额:
$ 30.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Reconstruction and Application of Learning Methods for Symbolic Regression Models
符号回归模型学习方法的重构及应用
- 批准号:
23H03466 - 财政年份:2023
- 资助金额:
$ 30.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)