Foundations of Dimension Reduction and Graphics

降维和图形基础

基本信息

  • 批准号:
    0103983
  • 负责人:
  • 金额:
    $ 27.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2005-06-30
  • 项目状态:
    已结题

项目摘要

Regression analysis is the general area of study of how a response variable changes as one or more predictors are varied over their possible values. Regression is one of the most widely applied areas in statistical analysis, and is used for monitoring the performance of assembly lines, for determining the success or failure of social innovations, to predict the future outcomes based on passed data. Regression analysis has a long history, dating back at least 200 years. A myriad of methods for specific types of problems (e. g., problems in which the response is a survival time, or a binary variable) have been developed. The work proposed in this project looks at regression in a very general way. It is founded on asking two questions. First, how much can be learned about dependence through using graphs? And the second question: how far can one push regression methodology without making any limiting assumptions about the nature of the problem at hand?Over the last decade, substantial progress has been made on the first of these questions, summarized in two books, a theoretical summary of the area in Cook (1998a) and an applied approach to regression through graphics in Cook and Weisberg (1999a). Both theoretical and applied issues must be understood to develop methodology for regression based on graphics. The second question is important because all the existing methodology for regression through graphics is based on a few assumptions, generally concerning the distribution of the predictors. The methodology to be developed in this project will overcome the limitations that are imposed by making assumptions at the outset. In particular, the assumption that predictors must be at least approximately linearly related is not required. In addition, the method can be extended to qualitative predictors like factors.
回归分析是研究响应变量如何随着一个或多个预测变量在其可能值上的变化而变化的一般领域。回归是统计分析中应用最广泛的领域之一,用于监控装配线的性能,确定社会创新的成功或失败,并根据传递的数据预测未来的结果。回归分析有着悠久的历史,至少可以追溯到200年前。针对特定类型问题的无数方法(例如,例如,在一个实施例中,其中响应是存活时间或二元变量的问题)。 这个项目中提出的工作以一种非常普遍的方式看待回归。它基于两个问题。首先,通过使用图可以了解多少相关性?第二个问题是:在不对手头问题的性质做任何限制性假设的情况下,回归方法能走多远?在过去的十年中,第一个问题已经取得了实质性的进展,总结在两本书中,库克(1998年a)的理论总结和库克和韦斯伯格(1999年a)通过图形回归的应用方法。必须理解理论和应用问题,以开发基于图形的回归方法。第二个问题很重要,因为所有现有的通过图形进行回归的方法都是基于一些假设,通常涉及预测因子的分布。本项目拟制定的方法将克服一开始就作出假设所带来的限制。特别地,不需要预测因子必须至少近似线性相关的假设。此外,该方法可以扩展到定性预测因子等。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ralph Cook其他文献

Administrative Records Experiment in 2000 ( AREX 2000 ) Outcomes Evaluation FINAL REPORT
2000 年行政记录实验 (AREX 2000) 结果评估最终报告
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dawson;Joseph Conklin;K. Conklin;Gary Chappell;Ralph Cook;Ann Daniele;Matt Falkenstein
  • 通讯作者:
    Matt Falkenstein

Ralph Cook的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ralph Cook', 18)}}的其他基金

Doctoral Dissertation Research: Envelope Models and Methods
博士论文研究:信封模型和方法
  • 批准号:
    1156026
  • 财政年份:
    2012
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Envelope Models and Methods for Efficient Multivariate Analysis with Applications to Tissue Engineering
用于高效多元分析的包络模型和方法及其在组织工程中的应用
  • 批准号:
    1007547
  • 财政年份:
    2010
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Model-Based and Model-Free Dimension Reduction with Applications to Bioinformatics
合作研究:基于模型和无模型的降维及其在生物信息学中的应用
  • 批准号:
    0704098
  • 财政年份:
    2007
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Sufficient Dimension Reduction for High Dimensional Data with Applications in Bioinformatics
合作研究:高维数据的充分降维及其在生物信息学中的应用
  • 批准号:
    0405360
  • 财政年份:
    2004
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Graphical Paradigms for Teaching and Using Statistics
统计教学和使用的图形范式
  • 批准号:
    9652887
  • 财政年份:
    1997
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Foundations of Regression Graphics
回归图形的基础
  • 批准号:
    9703777
  • 财政年份:
    1997
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Graphical Paradigms for Teaching and Using Statistics
统计教学和使用的图形范式
  • 批准号:
    9354678
  • 财政年份:
    1993
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Statistical Graphics: Foundations of Regression Graphics
数学科学:统计图形:回归图形基础
  • 批准号:
    9212413
  • 财政年份:
    1992
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Statistical Graphics: Diagnostics andInference
数学科学:统计图形:诊断和推理
  • 批准号:
    9001298
  • 财政年份:
    1990
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant

相似海外基金

Generalization of global topology optimization using dimension reduction technology
使用降维技术的全局拓扑优化的推广
  • 批准号:
    22K03874
  • 财政年份:
    2022
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dimension Reduction and Complex High-Dimensional Data
降维和复杂的高维数据
  • 批准号:
    RGPIN-2021-04073
  • 财政年份:
    2022
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Discovery Grants Program - Individual
Accelerating Bayesian Dimension Reduction for Dynamic Network Data with Many Observations
通过大量观察加速动态网络数据的贝叶斯降维
  • 批准号:
    2152774
  • 财政年份:
    2022
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Dimension reduction techniques for mixed integer programs
混合整数规划的降维技术
  • 批准号:
    RGPIN-2021-02475
  • 财政年份:
    2022
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Discovery Grants Program - Individual
Dimension Reduction and Data Visualization for Regression Analysis of Metric-Space-Valued Data
用于度量空间值数据回归分析的降维和数据可视化
  • 批准号:
    2210775
  • 财政年份:
    2022
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
  • 批准号:
    2147546
  • 财政年份:
    2022
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Stochastic Shielding for Dimension Reduction in Models of Biological Systems
生物系统模型降维的随机屏蔽
  • 批准号:
    2052109
  • 财政年份:
    2021
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
  • 批准号:
    10196077
  • 财政年份:
    2021
  • 资助金额:
    $ 27.4万
  • 项目类别:
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
  • 批准号:
    10366073
  • 财政年份:
    2021
  • 资助金额:
    $ 27.4万
  • 项目类别:
CIF:Small: Theory and Methods for Simultaneous Feature Auto-grouping and Dimension Reduction in Supervised Multivariate Learning
CIF:Small:监督多元学习中同时特征自动分组和降维的理论和方法
  • 批准号:
    2105818
  • 财政年份:
    2021
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了