Conditional Modeling and Conditional Inference

条件建模和条件推理

基本信息

  • 批准号:
    1007593
  • 负责人:
  • 金额:
    $ 24.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

In many applications, the complexity and dimensionality of the data preclude nonparametric inference, despite the availability of massive data sets. At the same time, it is usually true that too little is known about the detailed mechanisms generating the data to meaningfully specify parametric models. Conditional modeling and conditional inference are semi-parametric approaches to complex high-dimensional data in which attention is focused on manageable low-dimensional statistical modeling and estimation. Applications include efficient feature estimation and data classification (e.g. in computer vision), exact tests for broad and scientifically relevant hypotheses (e.g. in the statistical analysis of multi-electrode neuronal recordings), exploration of time scale in non-stationary processes (e.g. in the study of market dynamics), and construction of complex distributions through successive low-dimensional perturbations (e.g. in the study of probabilistic context-sensitive grammars). High-dimensional data are ubiquitous. Sources include molecular biology, finance, neurophysiological recordings, and the imagery and text of the Internet. Despite the availability of almost unlimited amounts of these data, their complexity and high dimensionality challenge existing statistical models and represent a bottleneck to successful applications. Oftentimes the complexity and dimensionality can be finessed through mathematical methods that select and focus on a collection of low-dimensional characteristics of the data. The approach avoids untenable or un-testable model assumptions without necessarily compromising the information content and power of the data. The research is at the interface between statistical theory and scientific application, with potential impact in technology (e.g. through computer vision) and, more broadly, society (e.g. through neuroscience and better financial modeling).
在许多应用中,尽管有大量的数据集,但数据的复杂性和维度排除了非参数推理的可能性。同时,人们通常对生成数据的详细机制知之甚少,无法有意义地指定参数模型。条件建模和条件推理是对复杂高维数据的半参数方法,其中的注意力集中在可管理的低维统计建模和估计上。应用包括有效的特征估计和数据分类(例如在计算机视觉中),对广泛的和科学上相关的假设的精确测试(例如在多电极神经元记录的统计分析中),探索非平稳过程中的时间尺度(例如在市场动力学研究中),以及通过连续的低维扰动构造复杂分布(例如在概率上下文敏感语法的研究中)。高维数据无处不在。来源包括分子生物学、金融、神经生理学记录以及互联网的图像和文本。尽管这些数据几乎是无限的,但它们的复杂性和高维性挑战了现有的统计模型,并成为成功应用的瓶颈。通常,可以通过选择并集中于数据的低维特征集合的数学方法来精细化复杂性和维度。该方法避免了不成立或不可检验的模型假设,而不一定会损害数据的信息内容和能力。这项研究处于统计理论和科学应用之间的交界处,对技术(例如通过计算机视觉)以及更广泛的社会(例如通过神经科学和更好的金融建模)具有潜在的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stuart Geman其他文献

A chaos hypothesis for some large systems of random equations
Bayesian statistical methods applied to emission tomography with physical phantom and patient data
  • DOI:
    10.1007/bf02368621
  • 发表时间:
    1992-11-01
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Kevin Monroe Manbeck;Stuart Geman
  • 通讯作者:
    Stuart Geman

Stuart Geman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stuart Geman', 18)}}的其他基金

CRCNS: Representation and Computation in Natural Vision
CRCNS:自然视觉中的表示和计算
  • 批准号:
    0423031
  • 财政年份:
    2004
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Mathematical and Computational Problems in Object Recognition
数学科学:物体识别中的数学和计算问题
  • 批准号:
    9217655
  • 财政年份:
    1993
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
A Mathematical Framework for Image Analysis
图像分析的数学框架
  • 批准号:
    8813699
  • 财政年份:
    1989
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
PYI: Mathematical Sciences: A Mathematics for Parallel Processing With Applications To Problems in Inference and Optimization
PYI:数学科学:并行处理数学及其在推理和优化问题中的应用
  • 批准号:
    8352087
  • 财政年份:
    1984
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Techniques For Nonparametric Estimation
数学科学:非参数估计技术
  • 批准号:
    8306507
  • 财政年份:
    1983
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Statistical Modeling and Inference for Network Data in Modern Applications
现代应用中网络数据的统计建模和推理
  • 批准号:
    2326893
  • 财政年份:
    2023
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    $ 24.6万
  • 项目类别:
Modeling and Optimal Inference in change-point models with ultra-high dimensional data
超高维数据变点模型的建模和优化推理
  • 批准号:
    RGPIN-2019-04464
  • 财政年份:
    2022
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling, inference and risk aggregation for dependent insurance losses
家属保险损失的建模、推理和风险汇总
  • 批准号:
    RGPIN-2019-04190
  • 财政年份:
    2022
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Power Systems Dynamics from Real-Time Data: Modeling, Inference, and Stability-Aware Optimization
协作研究:实时数据的电力系统动力学:建模、推理和稳定性感知优化
  • 批准号:
    2150571
  • 财政年份:
    2022
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Power Systems Dynamics from Real-Time Data: Modeling, Inference, and Stability-Aware Optimization
协作研究:实时数据的电力系统动力学:建模、推理和稳定性感知优化
  • 批准号:
    2150596
  • 财政年份:
    2022
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
  • 批准号:
    RGPIN-2019-03962
  • 财政年份:
    2022
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Discovery Grants Program - Individual
Traffic safety margin inference via machine learning for 3D spatial modeling
通过 3D 空间建模的机器学习进行交通安全裕度推断
  • 批准号:
    572807-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Alliance Grants
Simulation of nucleation based on Bayesian inference and surrogate modeling
基于贝叶斯推理和代理建模的成核模拟
  • 批准号:
    22K18875
  • 财政年份:
    2022
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Modeling and Inference for Data with Network Dependency
具有网络依赖性的数据的建模和推理
  • 批准号:
    2210402
  • 财政年份:
    2022
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了