Bayesian Methods for Variable Selection in Generalized/Nonlinear Models
广义/非线性模型中变量选择的贝叶斯方法
基本信息
- 批准号:1007871
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The current proposal builds upon the P.I.'s experitize in variable selection and summarizes her current and future directions in the development of Bayesian methodologies. In particular, the P.I. plans to consider extensions to generalized models and to models that allow arbitrary nonlinear associations of a set of variables to a response. Inferential strategies for the proposed models are more challenging than the typical linear settings addressed by the P.I. in previous work. In addition, nonparametric priors will be investigated with the purpose of sharpening the selection and relaxing distributional assumptions of the models, such as those on random effects and on the error terms, often questionable in real-data applications.Methodologies developed through this project carry potential for significant impact in statistics and in applied fields in which high-dimension/low-sample-size data arise. Applications to data arising from interdisciplinary collaborations will demonstrate the practical usefulness of the proposed methods. In particular, the P.I. plans to build upon her recent interest in brain imaging data by investigating applications and extensions of Bayesian methods for variable selection to generalized linear and mixed models currently used for the analysis of such data. The broader impacts of this proposal are in its educational and training objectives, in its efforts to disseminate results and in the collaborative nature of the proposed research. The P.I. maintains an updated webpage on her research activities where papers and accompanying software are posted in a timely manner.
目前的提案建立在P.I.总结了她在变量选择方面的经验,并总结了她在贝叶斯方法学发展中的当前和未来的方向。特别是,P.I.计划考虑扩展到广义模型和模型,允许任意非线性协会的一组变量的响应。所提出的模型的推理策略比PI解决的典型线性设置更具挑战性。在以前的工作。此外,非参数先验将进行调查,锐化选择和放松分布假设的模型,如随机效应和误差项,往往在实际数据的应用程序中有问题的目的。通过这个项目开发的方法进行统计和应用领域,其中高维/低样本量的数据出现重大影响的潜力。对跨学科合作产生的数据的应用将证明所提出的方法的实际有用性。特别是,P.I.计划建立在她最近的兴趣在脑成像数据的研究应用和扩展贝叶斯方法的变量选择广义线性和混合模型目前用于分析这些数据。这一建议的更广泛影响体现在其教育和培训目标、传播成果的努力以及拟议研究的协作性质。私家侦探维持一个关于其研究活动的最新网页,及时张贴论文和附带软件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marina Vannucci其他文献
Emotional words evoke region- and valence-specific patterns of concurrent neuromodulator release in human thalamus and cortex
情绪词汇会引发人类丘脑和皮层中同时发生的神经调节剂释放的区域和效价特异性模式。
- DOI:
10.1016/j.celrep.2024.115162 - 发表时间:
2025-01-28 - 期刊:
- 影响因子:6.900
- 作者:
Seth R. Batten;Alec E. Hartle;Leonardo S. Barbosa;Beniamino Hadj-Amar;Dan Bang;Natalie Melville;Tom Twomey;Jason P. White;Alexis Torres;Xavier Celaya;Samuel M. McClure;Gene A. Brewer;Terry Lohrenz;Kenneth T. Kishida;Robert W. Bina;Mark R. Witcher;Marina Vannucci;Brooks Casas;Pearl Chiu;Pendleton R. Montague;William M. Howe - 通讯作者:
William M. Howe
A Bayesian nonparametric approach for clustering functional trajectories over time
- DOI:
10.1007/s11222-024-10521-6 - 发表时间:
2024-11-11 - 期刊:
- 影响因子:1.600
- 作者:
Mingrui Liang;Matthew D. Koslovsky;Emily T. Hébert;Darla E. Kendzor;Marina Vannucci - 通讯作者:
Marina Vannucci
Semiparametric Latent ANOVA Model for Event-Related Potentials
事件相关电位的半参数潜在方差分析模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Cheng;Meng Li;Marina Vannucci - 通讯作者:
Marina Vannucci
The official bulletin of the International Society for Bayesian Analysis A MESSAGE FROM THE ISBA EXECUTIVE Establishment of a Task Team for a Safe
国际贝叶斯分析学会的官方公报 ISBA 高管致辞 成立安全工作组
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Isba Bulletin;Marina Vannucci;Clara Grazian;Amy Herring;Daniele Durante;Christian Robert;David Rossell;Dan Simpson;Beatrix Jones - 通讯作者:
Beatrix Jones
Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective
小波系数的协方差结构:贝叶斯视角下的理论和模型
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Marina Vannucci;Fabio Corradi - 通讯作者:
Fabio Corradi
Marina Vannucci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marina Vannucci', 18)}}的其他基金
Collaborative Research: Covariate-Driven Approaches to Network Estimation
协作研究:协变量驱动的网络估计方法
- 批准号:
2113602 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian Network Estimation across Multiple Sample Groups and Data Types
协作研究:跨多个样本组和数据类型的贝叶斯网络估计
- 批准号:
1811568 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian Approaches for Inference on Brain Connectivity
合作研究:大脑连通性推理的贝叶斯方法
- 批准号:
1659925 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RTG: Cross-Training in Statistics and Computer Science
RTG:统计和计算机科学的交叉培训
- 批准号:
1547433 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Wavelet-based Statistical Modeling and Applications
基于小波的统计建模和应用
- 批准号:
0835552 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Continuing grant
Wavelet-based Statistical Modeling and Applications
基于小波的统计建模和应用
- 批准号:
0605001 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Some Applications of Wavelets in Statistics
小波在统计学中的一些应用
- 批准号:
0093208 - 财政年份:2001
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian Variable Selection Methods to Accelerate Identification of Important Psychological Predictors and Neural Substrates of Psychopathology
贝叶斯变量选择方法加速重要心理预测因素和精神病理学神经基础的识别
- 批准号:
10378517 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Bayesian Variable Selection Methods to Accelerate Identification of Important Psychological Predictors and Neural Substrates of Psychopathology
贝叶斯变量选择方法加速重要心理预测因素和精神病理学神经基础的识别
- 批准号:
10592357 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Bayesian methods for simultaneous clustering and variable selection
用于同时聚类和变量选择的贝叶斯方法
- 批准号:
2021831 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Studentship
Bayesian Variable Selection Methods for Matched Case-Control Studies
匹配病例对照研究的贝叶斯变量选择方法
- 批准号:
8454915 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Bayesian Variable Selection Methods for Matched Case-Control Studies
匹配病例对照研究的贝叶斯变量选择方法
- 批准号:
8554322 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Tracking of Human Motion by Combining Recursive Bayesian Estimation Methods with Fractional Order / Variable Order models
通过将递归贝叶斯估计方法与分数阶/变阶模型相结合来跟踪人体运动
- 批准号:
162182751 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Research Grants
Bayesian Methods for Genomics with Variable Selection
具有变量选择的基因组学贝叶斯方法
- 批准号:
7046119 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Bayesian Methods for Genomics with Variable Selection
具有变量选择的基因组学贝叶斯方法
- 批准号:
7535458 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Bayesian Methods for Genomics with Variable Selection
具有变量选择的基因组学贝叶斯方法
- 批准号:
8086928 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Bayesian Methods for Genomics with Variable Selection
具有变量选择的基因组学贝叶斯方法
- 批准号:
7392341 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别: