Collaborative Research: Bayesian Network Estimation across Multiple Sample Groups and Data Types
协作研究:跨多个样本组和数据类型的贝叶斯网络估计
基本信息
- 批准号:1811568
- 负责人:
- 金额:$ 11.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As part of this collaborative research, the investigators will develop new statistical methods for the estimation of multiple graphical networks. The proposed research will address the challenge of learning networks when there is heterogeneity among both the subjects and the variables considered, breaking new ground in graphical modeling and Bayesian statistics. The methods developed will have the potential for significant impact in statistics and in applied fields in which problems of network estimation naturally arise. In particular, applications in neuroimaging will be explored. The project will include educational and training activities for graduate students. Findings will be disseminated to the research community and used to further interdisciplinary collaborative efforts. Software and code will be developed and deposited in public repositories.When all samples are collected under similar conditions or reflect a single type of disease, methods such as the graphical lasso or Bayesian network inference approaches can be applied to learn the underlying conditional dependence relations. In many studies, however, samples are obtained for different subtypes or disease, under varying experimental settings, or other heterogeneous conditions. The challenge becomes even more formidable when multiple data types are under consideration. This project will focus on the development of Bayesian methods to learn networks for a single data type across multiple sample groups using an approach that both links edge values across groups, and flexibly models which groups are most similar. Methods will also be extended to a hierarchical modeling framework of networks from both heterogeneous sets of subjects and heterogeneous data types.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
作为这项合作研究的一部分,研究人员将开发新的统计方法来估计多个图形网络。该研究将解决学习网络的挑战,当被考虑的对象和变量之间存在异质性时,在图形建模和贝叶斯统计方面开辟了新的领域。所开发的方法将对统计和自然产生网络估计问题的应用领域产生重大影响。特别是,应用在神经影像学将探讨。该项目将包括对研究生的教育和培训活动。研究结果将传播给研究界,并用于进一步的跨学科合作努力。软件和代码将开发和存储在公共存储库。当所有样本都是在相似的条件下收集或反映单一类型的疾病时,可以使用图形套索或贝叶斯网络推理方法来学习潜在的条件依赖关系。然而,在许多研究中,在不同的实验环境或其他异质性条件下获得不同亚型或疾病的样本。当考虑多种数据类型时,挑战变得更加艰巨。该项目将侧重于开发贝叶斯方法,以学习跨多个样本组的单一数据类型的网络,该方法既可以将组间的边值链接起来,也可以灵活地建模哪些组最相似。方法还将扩展到从异构主题集和异构数据类型的网络的分层建模框架。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian inference of networks across multiple sample groups and data types
跨多个样本组和数据类型的网络贝叶斯推理
- DOI:10.1093/biostatistics/kxy078
- 发表时间:2018
- 期刊:
- 影响因子:2.1
- 作者:Shaddox, Elin;Peterson, Christine B;Stingo, Francesco C;Hanania, Nicola A;Cruickshank-Quinn, Charmion;Kechris, Katerina;Bowler, Russell;Vannucci, Marina
- 通讯作者:Vannucci, Marina
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marina Vannucci其他文献
Emotional words evoke region- and valence-specific patterns of concurrent neuromodulator release in human thalamus and cortex
情绪词汇会引发人类丘脑和皮层中同时发生的神经调节剂释放的区域和效价特异性模式。
- DOI:
10.1016/j.celrep.2024.115162 - 发表时间:
2025-01-28 - 期刊:
- 影响因子:6.900
- 作者:
Seth R. Batten;Alec E. Hartle;Leonardo S. Barbosa;Beniamino Hadj-Amar;Dan Bang;Natalie Melville;Tom Twomey;Jason P. White;Alexis Torres;Xavier Celaya;Samuel M. McClure;Gene A. Brewer;Terry Lohrenz;Kenneth T. Kishida;Robert W. Bina;Mark R. Witcher;Marina Vannucci;Brooks Casas;Pearl Chiu;Pendleton R. Montague;William M. Howe - 通讯作者:
William M. Howe
A Bayesian nonparametric approach for clustering functional trajectories over time
- DOI:
10.1007/s11222-024-10521-6 - 发表时间:
2024-11-11 - 期刊:
- 影响因子:1.600
- 作者:
Mingrui Liang;Matthew D. Koslovsky;Emily T. Hébert;Darla E. Kendzor;Marina Vannucci - 通讯作者:
Marina Vannucci
Semiparametric Latent ANOVA Model for Event-Related Potentials
事件相关电位的半参数潜在方差分析模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Cheng;Meng Li;Marina Vannucci - 通讯作者:
Marina Vannucci
The official bulletin of the International Society for Bayesian Analysis A MESSAGE FROM THE ISBA EXECUTIVE Establishment of a Task Team for a Safe
国际贝叶斯分析学会的官方公报 ISBA 高管致辞 成立安全工作组
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Isba Bulletin;Marina Vannucci;Clara Grazian;Amy Herring;Daniele Durante;Christian Robert;David Rossell;Dan Simpson;Beatrix Jones - 通讯作者:
Beatrix Jones
Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective
小波系数的协方差结构:贝叶斯视角下的理论和模型
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Marina Vannucci;Fabio Corradi - 通讯作者:
Fabio Corradi
Marina Vannucci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marina Vannucci', 18)}}的其他基金
Collaborative Research: Covariate-Driven Approaches to Network Estimation
协作研究:协变量驱动的网络估计方法
- 批准号:
2113602 - 财政年份:2021
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian Approaches for Inference on Brain Connectivity
合作研究:大脑连通性推理的贝叶斯方法
- 批准号:
1659925 - 财政年份:2017
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
RTG: Cross-Training in Statistics and Computer Science
RTG:统计和计算机科学的交叉培训
- 批准号:
1547433 - 财政年份:2016
- 资助金额:
$ 11.99万 - 项目类别:
Continuing Grant
Bayesian Methods for Variable Selection in Generalized/Nonlinear Models
广义/非线性模型中变量选择的贝叶斯方法
- 批准号:
1007871 - 财政年份:2010
- 资助金额:
$ 11.99万 - 项目类别:
Continuing Grant
Wavelet-based Statistical Modeling and Applications
基于小波的统计建模和应用
- 批准号:
0835552 - 财政年份:2008
- 资助金额:
$ 11.99万 - 项目类别:
Continuing grant
Wavelet-based Statistical Modeling and Applications
基于小波的统计建模和应用
- 批准号:
0605001 - 财政年份:2006
- 资助金额:
$ 11.99万 - 项目类别:
Continuing Grant
Some Applications of Wavelets in Statistics
小波在统计学中的一些应用
- 批准号:
0093208 - 财政年份:2001
- 资助金额:
$ 11.99万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 11.99万 - 项目类别:
Continuing Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2348163 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333326 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333324 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333325 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210282 - 财政年份:2022
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215169 - 财政年份:2022
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215168 - 财政年份:2022
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Collaborative Research: Advancing Bayesian Thinking in STEM
合作研究:推进 STEM 中的贝叶斯思维
- 批准号:
2215920 - 财政年份:2022
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant