Theory and Modeling of Specific Ion Effects in Chemistry and Biology
化学和生物学中特定离子效应的理论和建模
基本信息
- 批准号:1011746
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Thomas Beck of the University of Cincinnati is supported by the Theory, Models and Computational Methods program in the Chemistry Division to carry out computational studies of specific ion or Hofmeister effects for anions. This work employs a novel theoretical approach for the statistical mechanics of liquids, the quasi-classical theory (QCT). The QCT partitions the excess chemical potential into three contributions by enacting a spatial partitioning with a hard-sphere constraint: 1) the cavity free energy for digging a hole in the solvent 2) the free energy for placing the solute into the cavity, and 3) the free energy to release the hard-sphere constraint, allowing direct contact between the solute and solvent. For ion solvation problems, step 2) above yields the largest contribution to the hydration free energy. It was found that a mean-field estimate of this term is quite accurate. This method permits computations of free energies at the quantum mechanical level, and in binding sites in proteins.Specific ion or Hofmeister effects are very important in a wide array of chemical, physical, and biological systems, for example the swelling of biological membranes, solvation free energies and activities, surface tension increments, bubble interactions, ion channel transport, colloid interactions, pH measurements, buffer behavior and protein folding and stability. Professor Beck is involved in organizing a workshop on ions in chemistry and biology to be held in Telluride CO. He is also heavily involved in undergraduate and graduate curriculum development.
辛辛那提大学的托马斯贝克得到化学系理论、模型和计算方法项目的支持,对阴离子的特定离子或霍夫迈斯特效应进行计算研究。这项工作采用了一种新的理论方法的统计力学的液体,准经典理论(QCT)。 QCT通过采用硬球约束的空间划分将过量化学势划分为三个贡献:1)用于在溶剂中挖洞的空腔自由能,2)用于将溶质放置到空腔中的自由能,以及3)释放硬球约束的自由能,允许溶质和溶剂之间的直接接触。对于离子溶剂化问题,上述步骤2)产生对水合自由能的最大贡献。 据发现,这一项的平均场估计是相当准确的。 这种方法允许在量子力学水平上计算自由能,并在蛋白质中的结合位点。特定离子或霍夫迈斯特效应在广泛的化学,物理和生物系统中非常重要,例如生物膜的溶胀,溶剂化自由能和活性,表面张力增量,气泡相互作用,离子通道运输,胶体相互作用,pH测量,缓冲行为以及蛋白质折叠和稳定性。 贝克教授参与组织了一个关于化学和生物学中离子的研讨会。他还积极参与了本科生和研究生课程的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Beck其他文献
Duchon–Robert solutions for the Rayleigh–Taylor and Muskat problems
Rayleigh-Taylor 和 Muskat 问题的 Duchon-Robert 解
- DOI:
10.1016/j.jde.2013.09.001 - 发表时间:
2012 - 期刊:
- 影响因子:2.4
- 作者:
Thomas Beck;Philippe Sosoe;Percy Wong - 通讯作者:
Percy Wong
Level Set Shape For Ground State Eigenfunctions On Convex Domains
凸域上基态本征函数的水平集形状
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Thomas Beck - 通讯作者:
Thomas Beck
Left Ventricular End-Diastolic Dimension for the Assessment of the Pulmonary to Systemic Flow Ratio in Congenital Heart Diseases
左心室舒张末期尺寸用于评估先天性心脏病的肺血流与体循环血流比率
- DOI:
10.1253/circj.cj-21-0896 - 发表时间:
2021 - 期刊:
- 影响因子:3.3
- 作者:
Yasutaka Fushimi;Tomohisa Okada;Sonoko Oshima;Yusuke Yokota;Hikaru Fukutomi;Gosuke Okubo;Satoshi Nakajima;Akira Yamamoto;Wei Liu;Sinyeob Ahn;Thomas Beck;and Kaori Togashi.;Masutani Satoshi - 通讯作者:
Masutani Satoshi
The isoperimetric inequality for convex subsets of the sphere
球体凸子集的等周不等式
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Farhan Azad;Thomas Beck;Karolina Lokaj - 通讯作者:
Karolina Lokaj
Control of the actin cytoskeleton by extracellular signals.
通过细胞外信号控制肌动蛋白细胞骨架。
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Thomas Beck;P. Delley;Michael N. Hall - 通讯作者:
Michael N. Hall
Thomas Beck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Beck', 18)}}的其他基金
Estimates on eigenvalues and eigenfunctions in convex settings
凸设置中特征值和特征函数的估计
- 批准号:
1954304 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Quantum-Designed Models of Bulk and Interfacial Solvation
体相和界面溶剂化的量子设计模型
- 批准号:
1955161 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Estimates on eigenvalues and eigenfunctions in convex settings
凸设置中特征值和特征函数的估计
- 批准号:
2042654 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Quantum Models of Ion Solvation Thermodynamics
离子溶剂化热力学的量子模型
- 批准号:
1565632 - 财政年份:2016
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Theory and Modeling of Specific Ion Solvation in Water and Non-Aqueous Solvents with Applications to Energy Storage
水和非水溶剂中特定离子溶剂化的理论和建模及其在储能中的应用
- 批准号:
1266105 - 财政年份:2013
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Modeling specific-ion effects in aqueous solutions and ion channels
模拟水溶液和离子通道中的特定离子效应
- 批准号:
0709560 - 财政年份:2007
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
ITR/AP+SY(DMR): Multiscale Quantum Simulations of Electron Transport in Molecular Devices
ITR/AP SY(DMR):分子器件中电子传输的多尺度量子模拟
- 批准号:
0112322 - 财政年份:2001
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Multigrid Methods for Simulation of Complex Materials
复杂材料模拟的多重网格方法
- 批准号:
9632309 - 财政年份:1996
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Theory of Tethered Polymer-Solution Interfaces and Quantum Impurities
系留聚合物溶液界面和量子杂质理论
- 批准号:
9225123 - 财政年份:1993
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
An Interdisciplinary Design and Manufacturing Laboratory
跨学科设计和制造实验室
- 批准号:
9250928 - 财政年份:1992
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Toward Patient-Specific Computational Modeling of Tricuspid Valve Repair in Hypoplastic Left Heart Syndrome
左心发育不全综合征三尖瓣修复的患者特异性计算模型
- 批准号:
10643122 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
- 批准号:
10798514 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Patient specific computational modeling of fluid-structure interactions of cerebrospinal fluid for biomarkers in Alzheimer's disease
阿尔茨海默病生物标志物脑脊液流固相互作用的患者特定计算模型
- 批准号:
10644281 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Modeling schizophrenia with patient-specific mutations in GRIN2A and SP4
利用 GRIN2A 和 SP4 患者特异性突变模拟精神分裂症
- 批准号:
10741466 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Acoustic-anatomic modeling and development of a patient-specific wearable therapeutic ultrasound device for peripheral arterial disease
针对外周动脉疾病的患者专用可穿戴超声治疗设备的声学解剖建模和开发
- 批准号:
10603253 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
NEoC – NeuroEnergetics-on-Chip: Disease modeling of impaired brain glucose metabolism using patient-specific iPSC-derived microphysiological models of the neurovascular unit
NEoC â NeuroEnergetics-on-Chip:使用患者特异性 iPSC 衍生的神经血管单元微生理模型对大脑葡萄糖代谢受损进行疾病建模
- 批准号:
525882861 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
WBP Fellowship
Bayesian Data-Driven Subject-Specific Modeling of Voice Production
贝叶斯数据驱动的语音产生的特定主题建模
- 批准号:
10360108 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Modeling Dynamic Immune Cell Modulation in a 3-D Tissue Engineered Platform to Enhance Patient-specific Immunotherapy for Lung Cancer
在 3D 组织工程平台中模拟动态免疫细胞调节,以增强肺癌患者特异性免疫治疗
- 批准号:
10518637 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
ERI: CAS- Climate: Improving green roof technologies by modeling species-specific impacts in the urban microclimate
ERI:CAS-气候:通过模拟城市微气候中特定物种的影响来改进绿色屋顶技术
- 批准号:
2139003 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Modeling age-specific computational strategies during reward seeking
在奖励寻求过程中对特定年龄的计算策略进行建模
- 批准号:
10703513 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别: