Bayesian Data-Driven Subject-Specific Modeling of Voice Production
贝叶斯数据驱动的语音产生的特定主题建模
基本信息
- 批准号:10360108
- 负责人:
- 金额:$ 18.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAddressAdultAffectAir MovementsAreaAwardBayesian AnalysisBayesian ModelingBehaviorBiomechanicsBiophysical ProcessCharacteristicsCommunicationComplexComputer ModelsCoupledCouplingDataDiagnosisDiseaseEdemaElementsFunctional disorderFutureGoalsHealthHumanHybridsIndividualKineticsKnowledgeLaryngitisLarynxLiquid substanceLungMeasurementMethodsModelingNational Institute on Deafness and Other Communication DisordersNatureNoiseNormal RangeOperative Surgical ProceduresOral cavityOutcomeOutcome StudyOutcomes ResearchParticipantPathologicPathologyPatientsPatternPhonationPolypsPreventionProbabilityProductionPropertyResearchResearch PersonnelSignal TransductionSpeedStrategic PlanningStructureSystemTechniquesTissuesTreatment EfficacyUncertaintyValidationVoiceVoice Disordersdesignefficacy evaluationhuman dataimprovedin vivoindividual patientkinematicsmodel designnovel strategiespredictive modelingsimulationtoolvibrationvocal cord
项目摘要
Project Summary/Abstract
This proposal aims to develop Bayesian subject-specific computational models of voice production in vocally
normal individuals and patients with structural voice disorders. Voice production is a complex biophysical
process, consisting of vocal fold biomechanics and sub-glottal, intra-glottal, and supra-glottal aerodynamics, as
well as their interactions. Predictive computational modeling approaches are highly needed as they provide
scientific tools for better understanding the detailed function of such a sophisticated coupled system. They can
be employed to study the normal function of voice production and investigate how it can be impacted due to an
anomaly or malfunction in the vocal fold structure or behavior. Experimental data of high-speed videoendoscopy,
electroglottography and acoustic signals will be used to design computational models of voice production,
coupling laryngeal dynamics and aerodynamics. In Aim 1, the objective is to develop Bayesian predictive models
that can capture the uncertainties inherent in the data and models. The Bayesian inference will be performed
using the high-speed videoendoscopy and electroglottography data. The models will be validated with acoustic
signals for each vocally normal participant. The model will couple the vocal fold tissue vibration (kinetics and
kinematics) with the instantaneously interacting aerodynamics of glottal airflow to take into account the flow-
structure interaction during phonation. In Aim 2, the goal is to design patient-specific computational models of
voice production for patients with structural voice pathologies including vocal polyps, Reinke's edema, and
laryngitis. The assumption is that the vocal fold vibrations can be forced and fluid-induced in the patients. An
external patient-specific force component will be calculated from the model for the patients, where the physical
structure and vibratory behavior of the vocal folds are negatively impacted by the pathology. The parameter
uncertainties will be calculated and expected to vary greatly among the patients due to the disorders. The
outcome of this research will extend and deepen our understanding of the normal voice function and
pathophysiology of voice disorders. The proposed research is in harmony with multiple priority areas described
in the 2017-2021 Strategic Plan of the NIDCD [3]. Aim 1 supports Priority 1 (“deepen our understanding of the
normal function of the systems of human communication”) by designing computational models of voice
production for norm. Aim 2 proposes to determine vocal dynamics and glottal aerodynamics of voice production
in patients with structural voice disorders, which addresses Priority 2 (“increase our knowledge about conditions
that alter or diminish communication and health”). Both Aims support Priority 3 (“improve methods of diagnosis,
treatment, and prevention”) through determining what laryngeal mechanisms are disrupted in patients with voice
disorder and how it affects the acoustic signal.
项目总结/摘要
该建议旨在发展语音中特定主题的贝叶斯发声计算模型
正常人和结构性嗓音障碍患者。发声是一个复杂的生物物理过程
过程,包括声带生物力学和声门下,声门内,声门上的空气动力学,作为
以及他们的互动。预测计算建模方法是非常需要的,因为它们提供了
科学工具,以更好地了解这样一个复杂的耦合系统的详细功能。他们可以
研究发声的正常功能,并调查它是如何受到影响的,
声带结构或行为的异常或故障。高速视频内窥镜的实验数据,
电声门图和声信号将用于设计声音产生的计算模型,
耦合喉部动力学和空气动力学。在目标1中,目标是开发贝叶斯预测模型
它可以捕捉数据和模型中固有的不确定性。将进行贝叶斯推断
使用高速视频内窥镜和电声门图数据。模型将通过声学验证
每个声音正常的参与者的信号。该模型将耦合声带组织振动(动力学和
运动学)与声门气流的瞬时相互作用的空气动力学,以考虑流动,
发声时的结构相互作用。在目标2中,目标是设计患者特定的计算模型,
结构性声音病变患者的发声,包括声带息肉、Reinke水肿和
喉炎假设是声带振动可以在患者中被强迫和流体诱导。一个
将根据患者的模型计算外部患者特异性分力,其中物理
声带的结构和振动行为受到病理学的负面影响。参数
将计算不确定性,并且预期由于疾病而在患者之间变化很大。的
这项研究的结果将扩展和加深我们对正常语音功能的理解,
嗓音障碍的病理生理学拟议的研究与所述的多个优先领域相协调
《2017-2021年国家发展战略规划》[3]。目标1支持优先事项1(“加深我们对
人类交流系统的正常功能”),
生产规范。目标2提出确定发声的发声动力学和声门空气动力学
在结构性嗓音障碍患者中,这涉及优先事项2(“增加我们对
改变或削弱沟通和健康”)。这两个目标都支持优先事项3(“改进诊断方法,
治疗和预防”),通过确定哪些喉部机制被破坏的患者的声音
以及它如何影响声学信号。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maryam Naghibolhosseini其他文献
Maryam Naghibolhosseini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maryam Naghibolhosseini', 18)}}的其他基金
Bayesian Data-Driven Subject-Specific Modeling of Voice Production
贝叶斯数据驱动的语音产生的特定主题建模
- 批准号:
10904247 - 财政年份:2022
- 资助金额:
$ 18.8万 - 项目类别:
Bayesian Data-Driven Subject-Specific Modeling of Voice Production
贝叶斯数据驱动的语音产生的特定主题建模
- 批准号:
10609493 - 财政年份:2022
- 资助金额:
$ 18.8万 - 项目类别:
Studying the Laryngeal Mechanisms Underlying Dysphonia in Connected Speech
研究连语语音中发声困难的喉部机制
- 批准号:
10608001 - 财政年份:2019
- 资助金额:
$ 18.8万 - 项目类别:
Studying the Laryngeal Mechanisms Underlying Dysphonia in Connected Speech
研究连语语音中发声困难的喉部机制
- 批准号:
9901502 - 财政年份:2019
- 资助金额:
$ 18.8万 - 项目类别:
Studying the Laryngeal Mechanisms Underlying Dysphonia in Connected Speech
研究连语语音中发声困难的喉部机制
- 批准号:
10378024 - 财政年份:2019
- 资助金额:
$ 18.8万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Research Grant














{{item.name}}会员




