Understanding atomic force microscope nanomaterial synthesis: simulations and experiments

了解原子力显微镜纳米材料合成:模拟和实验

基本信息

  • 批准号:
    1012419
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

Professors Marco Rolandi and Scott Dunham of the University of Washington are receiving an award from the Macromolecular, Supramolecular and Nanochemistry Program to explore both experimentally and computationally the synthesis of nanomaterials spatially confined in the region around the tip of an atomic force microscope (AFM). Accurate placement control during nanomaterial synthesis is critical for device integration and applications in electronics and optoelectronics. The region between the tip of an AFM and a sample constitutes a unique nanoscale environment where highly localized zeptomolar chemical reactions occur. A recent approach involves applying a moderate (~10 V) bias across the tip-sample gap containing ad-hoc liquid precursors. Tip sample proximity exposes the precursor molecules to electric fields in excess of 109 V/m, as well as tip field emitted electrons with current densities as high as 107 A/m2. This strategy has already demonstrated the spatially confined synthesis of carbon and semiconductor nanowires, but a clear understanding of the nanoscale chemical reactions leading to these nanomaterials is still lacking. The awarded project focuses on understanding the fundamental processes occurring near the tip/sample gap during nanomaterials synthesis by creating physically based models of the system. In this integrated approach, the modeling and experimental efforts proceed synergistically, with the measured behavior suggesting possible models and the resulting models used for refining the characterization. Results from this work are expected to lay the foundations for a strategy, broadly applicable to spatially controlled nanomaterial synthesis, that enables novel nanodevices design. Lack of spatial control in synthesis processes is a recognized bottleneck in the investigation of nanomaterials and structures at the nanometer scale. The facile nano-confined chemistry of this project is applicable to a broad range of materials, thus impacting nanoscale science and the development of nanomaterials technological applications. From the environmental standpoint, this novel approach does not require use of abundant quantities of polymer based sacrificial layers, nor the contamination of gallons of water for photoresist processing, as is the case in the widely adopted radiation-based lithography. Educational efforts in this project include making nanoscale science and computer modeling accessible to a broader scientific community including undergraduate institutions, community colleges, middle and high schools. The latest experimental results and modeling tools are projected to be included in courses at both the undergraduate and graduate levels. High school teachers and undergraduate students are routinely hosted at the Center for Nanotechnology laboratories, as part of the RET and REU existing programs.
华盛顿大学的Marco Rolandi和Scott Dunham教授正在接受大分子,超分子和纳米化学计划的奖励,以探索实验和计算在空间上限制在原子力显微镜(AFM)尖端周围区域的纳米材料的合成。在纳米材料合成过程中,精确的位置控制对于器件集成以及在电子学和光电子学中的应用至关重要。原子力显微镜的尖端和样品之间的区域构成了一个独特的纳米级环境,在那里发生高度局部化的zeptomolar化学反应。最近的一种方法涉及在含有特设液体前体的尖端-样品间隙上施加中等(~10 V)偏压。 尖端样品接近将前体分子暴露于超过109 V/m的电场,以及电流密度高达107 A/m2的尖端场发射电子。这种策略已经证明了碳和半导体纳米线的空间限制合成,但对导致这些纳米材料的纳米级化学反应的清晰理解仍然缺乏。获奖项目的重点是通过创建基于物理的系统模型,了解纳米材料合成过程中尖端/样品间隙附近发生的基本过程。在这种集成的方法中,建模和实验工作协同进行,测量的行为表明可能的模型和用于改进表征的结果模型。这项工作的结果预计将奠定基础的战略,广泛适用于空间控制的纳米材料合成,使新的纳米器件设计。合成过程中缺乏空间控制是纳米材料和结构在纳米尺度上研究的公认瓶颈。该项目的简易纳米限制化学适用于广泛的材料,从而影响纳米科学和纳米材料技术应用的发展。从环境的角度来看,这种新颖的方法不需要使用大量的基于聚合物的牺牲层,也不需要用于光刻胶处理的数加仑水的污染,如在广泛采用的基于辐射的光刻中的情况。该项目的教育工作包括使更广泛的科学界(包括本科院校、社区学院、初中和高中)能够接触到纳米级科学和计算机建模。最新的实验结果和建模工具预计将被纳入本科和研究生课程。作为RET和REU现有计划的一部分,高中教师和本科生定期在纳米技术实验室中心举办。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marco Rolandi其他文献

Merging machine learning and bioelectronics for closed-loop control of biological systems and homeostasis
将机器学习与生物电子学相结合,以实现对生物系统和体内平衡的闭环控制
  • DOI:
    10.1016/j.xcrp.2023.101535
  • 发表时间:
    2023-08-16
  • 期刊:
  • 影响因子:
    7.300
  • 作者:
    Mohammad Jafari;Giovanny Marquez;Harika Dechiraju;Marcella Gomez;Marco Rolandi
  • 通讯作者:
    Marco Rolandi
Wafer scale direct-write of Ge and Si nanostructures with conducting stamps and a modified mask aligner
  • DOI:
    10.1007/s12274-013-0302-1
  • 发表时间:
    2013-03-11
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Hideki Sato;Stephanie E. Vasko;Marco Rolandi
  • 通讯作者:
    Marco Rolandi
A positive future for squid proteins
鱿鱼蛋白的光明未来
  • DOI:
    10.1038/nchem.1980
  • 发表时间:
    2014-06-20
  • 期刊:
  • 影响因子:
    20.200
  • 作者:
    Marco Rolandi
  • 通讯作者:
    Marco Rolandi
A modular fluorescent camera unit for wound imaging
一种用于伤口成像的模块化荧光相机单元
  • DOI:
    10.1038/s42003-025-08423-y
  • 发表时间:
    2025-07-05
  • 期刊:
  • 影响因子:
    5.100
  • 作者:
    Maryam Tebyani;Gordon Keller;Wan Shen Hee;Prabhat Baniya;Alex Spaeth;Tiffany Nguyen;Harika Dechiraju;Anthony Gallegos;Héctor Carrión;Derek Hamersly;Cristian Hernandez;Alexie Barbee;Hao-Chieh Hsieh;Elham Aslankoohi;Hsin-ya Yang;Narges Norouzi;Min Zhao;Alexander Sher;R. Rivkah Isseroff;Marco Rolandi;Mircea Teodorescu
  • 通讯作者:
    Mircea Teodorescu
The role of machine learning in advancing precision medicine with feedback control
  • DOI:
    10.1016/j.xcrp.2022.101149
  • 发表时间:
    2022-11-16
  • 期刊:
  • 影响因子:
  • 作者:
    Ksenia Zlobina;Mohammad Jafari;Marco Rolandi;Marcella Gomez
  • 通讯作者:
    Marcella Gomez

Marco Rolandi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marco Rolandi', 18)}}的其他基金

EAGER: NANOTUBE SUPPORTED 1D PROTON WIRES AND DEVICES
渴望:纳米管支持的一维质子线和器件
  • 批准号:
    1648815
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
MRI: Development of a Multi-Photon Microscope with Adaptive Optics
MRI:开发具有自适应光学器件的多光子显微镜
  • 批准号:
    1429810
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Integration of Biomaterials with Organic Electronics
生物材料与有机电子的集成
  • 批准号:
    1356349
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Investigating Protonic Semiconductivity in Polysaccharide Nanofibers with Field Effect Protonic Transistors
职业:用场效应质子晶体管研究多糖纳米纤维的质子半导率
  • 批准号:
    1150630
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Contextual Research-Empirical: Improving Visual Communication in Nanotechnology
情境研究-实证:改善纳米技术中的视觉传达
  • 批准号:
    1008568
  • 财政年份:
    2010
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
  • 批准号:
    82371997
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
根管粪肠球菌的超微结构分析与药物干预研究
  • 批准号:
    30870670
  • 批准年份:
    2008
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
TB方法在有机和生物大分子体系计算研究中的应用
  • 批准号:
    20773047
  • 批准年份:
    2007
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
  • 批准号:
    10465010
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Understanding the structural mechanism of spontaneous ubiquitin cargo clustering on the cell plasma membrane
了解细胞质膜上自发泛素货物聚集的结构机制
  • 批准号:
    10730734
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Understanding the Molecular Mechanisms of Fibromuscular Dysplasia
了解纤维肌发育不良的分子机制
  • 批准号:
    10397407
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
Understanding the Molecular Mechanisms of Fibromuscular Dysplasia
了解纤维肌发育不良的分子机制
  • 批准号:
    10609881
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
Understanding the Molecular Mechanisms of Fibromuscular Dysplasia
了解纤维肌发育不良的分子机制
  • 批准号:
    10162658
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
Understanding the Molecular Mechanisms of Fibromuscular Dysplasia
了解纤维肌发育不良的分子机制
  • 批准号:
    9974068
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
Structural understanding of human shelterin complex assembly at telomere and its regulation mechanism of telomerase activity
端粒端粒蛋白复合物组装结构及其端粒酶活性调控机制
  • 批准号:
    10470875
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
Structural understanding of human shelterin complex assembly at telomere and its regulation mechanism of telomerase activity
端粒上人庇护蛋白复合物组装的结构及其端粒酶活性调控机制
  • 批准号:
    10226388
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
Structural understanding of human shelterin complex assembly at telomere and its regulation mechanism of telomerase activity
端粒端粒蛋白复合物组装结构及其端粒酶活性调控机制
  • 批准号:
    10259846
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
An ovary-on-a-chip for understanding early folliculogenesis and reproductive toxicology in a large mammalian model
用于了解大型哺乳动物模型中早期卵泡发生和生殖毒理学的卵巢芯片
  • 批准号:
    10267664
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了