New statistical approaches to inverse problems in biomedicine
生物医学逆问题的新统计方法
基本信息
- 批准号:1016183
- 负责人:
- 金额:$ 31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of the project is to develop new computational tools for solving inverse problems arising in biomedical applications. The computational framework is based on the Bayesian statistical paradigm, in which the inverse problem is reformulated as a statistical inference problem, and information complementing the scarce and noisy data is imported in the form of prior probability distribution. The methodological emphasis of this project is the development of structural, hierarchical and dynamic prior models. Structural prior models make it possible to combine different imaging modalities, an approach often referred to as data assimilation. The closely related hierarchical models, on the other hand, allow uncertainties in the prior model itself, letting the data guide the prior. In particular, the approach facilitates the implementation of prior information that is qualitative in nature, important examples being sparsity or locality of the solution. Dynamic prior models are essential in time dependent problems, and they often involve structural elements. Another central question addressed in this project is the development of efficient computational strategies to explore the posterior probability distributions. In particular, sequential methods based on the use of fast reduced forward models will be explored. The visualization of uncertainties drawn from a Monte Carlo sample in imaging applications will also be addressed. The resulting algorithms will be applied to biomedical inverse problems, including Electrical Impedance Tomography (EIT), MagnetoEncephaloGraphy (MEG), Positron Emission Tomography (PET) and ElectroNeuroGraphy (ENG), using data provided by an already established network of collaborators.The current trend in biomedical research is to develop new imaging modalities, clinical procedures and technologies that are minimally invasive. Instead of using ionizing radiation that may constitute a health risk, methods that use weak electric currents or the electromagnetic fields of the body itself are preferable. Electric current/voltage measurements can be used to identify potential malignant tumors in breast tissue; localization of the onset loci of epileptic seizures, an essential procedure before brain surgery to gain control of refractive epilepsy, can be done by measuring the weak magnetic fields due to the brain activity. Similarly, in designing technologies that help patients with spinal cord trauma to regain control of their muscles, or patients with an amputated limb to control a prosthetic arm, new methods of recording non-invasively the nerve signals are developed. A common feature of these methods is that the signals that they rely on are weak, cluttered by noise, and hard to identify. In addition, the computational models are incomplete, since several details describing the setting are unknown. The investigator, together with his colleagues, develops computational methods to overcome the aforementioned difficulties. The methodology relies on probabilistic modeling of the signal and uncertainties within the model. The incomplete data is augmented by complementary information, and a particular emphasis is on the question, how to translate qualitative information about the unknowns into a quantitative form so that it can be entered in the computational model.
该项目的目的是开发新的计算工具来解决生物医学应用中出现的逆问题。计算框架基于贝叶斯统计范式,其中逆问题被重新表述为统计推理问题,并以先验概率分布的形式导入补充稀缺和噪声数据的信息。该项目的方法论重点是结构性、层次性和动态先验模型的开发。结构先验模型使得组合不同的成像模式成为可能,这种方法通常被称为数据同化。另一方面,密切相关的分层模型允许先验模型本身存在不确定性,让数据指导先验。特别是,该方法有助于实施本质上是定性的先验信息,重要的例子是解决方案的稀疏性或局部性。动态先验模型对于时间相关问题至关重要,并且通常涉及结构元素。该项目解决的另一个核心问题是开发有效的计算策略来探索后验概率分布。特别是,将探索基于使用快速简化前向模型的顺序方法。还将讨论从成像应用中蒙特卡罗样本中提取的不确定性的可视化。由此产生的算法将利用已建立的合作者网络提供的数据,应用于生物医学反演问题,包括电阻抗断层扫描(EIT)、脑磁图描记(MEG)、正电子发射断层扫描(PET)和神经电图描记(ENG)。当前生物医学研究的趋势是开发新的微创成像模式、临床程序和技术。与其使用可能构成健康风险的电离辐射,不如使用弱电流或身体本身的电磁场的方法。电流/电压测量可用于识别乳腺组织中潜在的恶性肿瘤;癫痫发作的发作位点的定位是脑部手术前控制屈光性癫痫的重要步骤,可以通过测量大脑活动引起的弱磁场来完成。同样,在设计帮助脊髓损伤患者重新控制肌肉或截肢患者控制假肢的技术时,开发了非侵入性记录神经信号的新方法。这些方法的一个共同特点是它们所依赖的信号微弱、充满噪声且难以识别。此外,计算模型不完整,因为描述设置的几个细节尚不清楚。研究人员与他的同事一起开发了计算方法来克服上述困难。该方法依赖于信号的概率建模和模型内的不确定性。不完整的数据通过补充信息得到增强,特别强调的问题是如何将未知的定性信息转化为定量形式,以便将其输入到计算模型中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erkki Somersalo其他文献
The uniqueness of the one-dimensional electromagnetic inversion with bounded potentials
- DOI:
10.1016/0022-247x(87)90112-0 - 发表时间:
1987-11-01 - 期刊:
- 影响因子:
- 作者:
Lassi Päivärinta;Erkki Somersalo - 通讯作者:
Erkki Somersalo
Perspectives in Numerical Analysis 2008
- DOI:
10.1007/s10543-008-0186-8 - 发表时间:
2008-08-05 - 期刊:
- 影响因子:1.700
- 作者:
Timo Eirola;Rolf Jeltsch;Claes Johnson;Erkki Somersalo;Rolf Stenberg - 通讯作者:
Rolf Stenberg
Erkki Somersalo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erkki Somersalo', 18)}}的其他基金
Bridging the Gap between Discrete and Continuous Partial Differential Equations in Medical imaging
弥合医学成像中离散和连续偏微分方程之间的差距
- 批准号:
2204618 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Bayesian Inverse Problems and Model Uncertainties
贝叶斯逆问题和模型不确定性
- 批准号:
1714617 - 财政年份:2017
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Computational Model-based Statistical Methods in Biomedicine
生物医学中基于计算模型的统计方法
- 批准号:
1312424 - 财政年份:2013
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
相似国自然基金
基于随机网络演算的无线机会调度算法研究
- 批准号:60702009
- 批准年份:2007
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
- 批准号:
10768004 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
Studentship
CAREER: New Statistical Approaches for Studying Evolutionary Processes: Inference, Attribution and Computation
职业:研究进化过程的新统计方法:推理、归因和计算
- 批准号:
2143242 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
New data science approaches to visualize and understand the impact of the microbiome on risk of graft-versus-host disease
新的数据科学方法可可视化和理解微生物组对移植物抗宿主病风险的影响
- 批准号:
10443213 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
- 批准号:
10342464 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
New Bayesian statistical mechanical approaches to integrative structural biology using unassigned NMR and mass spectrometry
使用未分配的核磁共振和质谱进行综合结构生物学的新贝叶斯统计机械方法
- 批准号:
RGPIN-2022-03287 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
Discovery Grants Program - Individual
New data science approaches to visualize and understand the impact of the microbiome on risk of graft-versus-host disease
新的数据科学方法可可视化和理解微生物组对移植物抗宿主病风险的影响
- 批准号:
10590722 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
Identification of human genetic factors associated with tuberculosis and associated diseases through the meta-analysis and new statistical approaches
通过荟萃分析和新的统计方法识别与结核病及相关疾病相关的人类遗传因素
- 批准号:
15H05271 - 财政年份:2015
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New statistical approaches for analysing foodwebs and species distributions
分析食物网和物种分布的新统计方法
- 批准号:
DP150102472 - 财政年份:2015
- 资助金额:
$ 31万 - 项目类别:
Discovery Projects
Phylogenetic clustering: new statistical inference and computational approaches to identify patterns of transmission of HIV and Hepatitis C.
系统发育聚类:识别艾滋病毒和丙型肝炎传播模式的新统计推断和计算方法。
- 批准号:
274502 - 财政年份:2012
- 资助金额:
$ 31万 - 项目类别:
Operating Grants














{{item.name}}会员




