New Bayesian statistical mechanical approaches to integrative structural biology using unassigned NMR and mass spectrometry
使用未分配的核磁共振和质谱进行综合结构生物学的新贝叶斯统计机械方法
基本信息
- 批准号:RGPIN-2022-03287
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The 125,000+ structures in the protein databank provide some of our richest insights into how biology functions at the molecular level. Proteins are life's little machines. These tiny molecules are responsible for replicating our DNA, turning food into energy, contracting our muscles, and conducting electrical signals in our nervous systems-among many other activities. The function of each protein depends on its structure: the specific three-dimensional shape that each protein folds into, which is encoded by its amino acid sequence. These structures have helped to reveal the extraordinary story of how life functions at the molecular level. This story, however, is incomplete because there are many proteins and protein complexes (groups of proteins that stick together and form larger structures) that we still do not know. This is because not all proteins or complexes are amenable to the experimental techniques that structural biologists routinely use. But recent advances in the application of machine learning are poised to change this. A team at Google's DeepMind recently developed a computer program called AlphaFold2 that can predict the protein structures with remarkable accuracy. In many cases predicted structures are very accurate, sometimes even as good as structures determined through gold-standard experimental approaches. However, in some other cases, the predictions get some details wrong, and these details can be critical important for some tasks, like searching for new drugs. Even worse, some fraction of predictions is simply wrong. Thus, one pressing challenge is to develop methods that can rapidly validate predictions, that is, to determine quickly if they can be trusted or not. Another challenge is that while AlphaFold2 excels at predicting the structures of individual proteins, it is not always accurate on multi-protein complexes, which are ubiquitous in biochemistry and cell biology. The main aim of this proposal is to develop new computational and experimental approaches that can leverage this remarkable new prediction tool by rapidly validating structures and assembling them into complexes. Our approach is focused on nuclear magnetic resonance and cross-linking mass spectrometry experiments in combination with sophisticated computer modeling. These experiments can be applied to a variety of biochemical systems, but the data can be difficult to interpret. We are developing modeling tools that use tools from Bayesian statistics and statistical mechanics to make sense of this challenging data. Solving these challenges will unlock new avenues for protein structure determination. The long-term goal of this project is to enable a range of new approaches to structural biology that will allow us to reveal protein structures that are currently hidden. By providing new tools, we will contribute to a better understanding of how life functions at the molecular level and provide new avenues for drug discovery and protein engineering.
蛋白质数据库中的125,000多个结构为我们提供了一些关于生物学如何在分子水平上发挥作用的最丰富的见解。蛋白质是生命的小机器。这些微小的分子负责复制我们的DNA,将食物转化为能量,收缩我们的肌肉,并在我们的神经系统中传导电信号-以及许多其他活动。每个蛋白质的功能取决于其结构:每个蛋白质折叠成的特定三维形状,由其氨基酸序列编码。这些结构有助于揭示生命如何在分子水平上发挥作用的非凡故事。然而,这个故事是不完整的,因为有许多蛋白质和蛋白质复合物(蛋白质组粘在一起,形成更大的结构),我们仍然不知道。这是因为并非所有的蛋白质或复合物都适合结构生物学家常规使用的实验技术。但机器学习应用的最新进展有望改变这一点。谷歌DeepMind的一个团队最近开发了一个名为AlphaFold 2的计算机程序,可以非常准确地预测蛋白质结构。在许多情况下,预测的结构非常准确,有时甚至与通过黄金标准实验方法确定的结构一样好。然而,在其他一些情况下,预测会在一些细节上出错,而这些细节对于某些任务来说可能至关重要,比如寻找新药。更糟糕的是,一些预测是完全错误的。因此,一个紧迫的挑战是开发能够快速验证预测的方法,即快速确定预测是否可信。另一个挑战是,虽然AlphaFold 2擅长预测单个蛋白质的结构,但它在生物化学和细胞生物学中普遍存在的多蛋白质复合物上并不总是准确的。该提案的主要目的是开发新的计算和实验方法,通过快速验证结构并将其组装成复合物,从而利用这一引人注目的新预测工具。我们的方法是集中在核磁共振和交联质谱实验结合先进的计算机建模。这些实验可以应用于各种生化系统,但数据可能很难解释。我们正在开发建模工具,使用贝叶斯统计和统计力学的工具来理解这些具有挑战性的数据。解决这些挑战将为蛋白质结构测定开辟新的途径。该项目的长期目标是为结构生物学提供一系列新方法,使我们能够揭示目前隐藏的蛋白质结构。通过提供新的工具,我们将有助于更好地了解生命在分子水平上的功能,并为药物发现和蛋白质工程提供新的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MacCallum, Justin其他文献
MacCallum, Justin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MacCallum, Justin', 18)}}的其他基金
Development of integrative approaches to biomolecular structure determination
生物分子结构测定综合方法的发展
- 批准号:
RGPIN-2015-03730 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Development of integrative approaches to biomolecular structure determination
生物分子结构测定综合方法的发展
- 批准号:
RGPIN-2015-03730 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Development of integrative approaches to biomolecular structure determination
生物分子结构测定综合方法的发展
- 批准号:
RGPIN-2015-03730 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Development of an electrochemical biosensor for psychoactive metabolites of marijuana
开发用于大麻精神活性代谢物的电化学生物传感器
- 批准号:
506992-2016 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Collaborative Research and Development Grants
Development of integrative approaches to biomolecular structure determination
生物分子结构测定综合方法的发展
- 批准号:
RGPIN-2015-03730 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Development of an electrochemical biosensor for psychoactive metabolites of marijuana
开发用于大麻精神活性代谢物的电化学生物传感器
- 批准号:
506992-2016 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Collaborative Research and Development Grants
Development of integrative approaches to biomolecular structure determination
生物分子结构测定综合方法的发展
- 批准号:
RGPIN-2015-03730 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Further development of a cannabis biosensor
大麻生物传感器的进一步开发
- 批准号:
499238-2016 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Engage Plus Grants Program
Development of integrative approaches to biomolecular structure determination
生物分子结构测定综合方法的发展
- 批准号:
RGPIN-2015-03730 - 财政年份:2015
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Proof-of-Concept Development of a Sensitive Electrochemical Cannabis Sensor
敏感电化学大麻传感器的概念验证开发
- 批准号:
488413-2015 - 财政年份:2015
- 资助金额:
$ 2.62万 - 项目类别:
Engage Grants Program
相似国自然基金
多元纵向数据与复发事件和终止事件的Bayesian联合模型研究
- 批准号:82173628
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
三维地质模型约束下地球化学场的Bayesian-MCMC推断
- 批准号:42072326
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
基于Bayesian Kriging模型的压射机构稳健优化设计基础研究
- 批准号:51875209
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
X射线图像分析中的MCMC-Bayesian理论与计算方法研究
- 批准号:U1830105
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:联合基金项目
基于Bayesian位移场的SAR图像精确配准方法研究
- 批准号:41601345
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多结局Bayesian联合生存模型及糖尿病并发症预测研究
- 批准号:81673274
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Meta流行病学和Bayesian方法构建针刺干预无偏倚风险效果评价体系研究
- 批准号:81403276
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
BtoC电子商务中基于分层Bayesian网络的信任与声誉计算理论研究
- 批准号:71302080
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Bayesian网络的坚硬顶板条件下煤与瓦斯突出预警控制机理研究
- 批准号:51274089
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Bayesian实物期权及在信用风险决策中的应用
- 批准号:71071027
- 批准年份:2010
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Bayesian genetic association analysis of all rare diseases in the Kids First cohort
Kids First 队列中所有罕见疾病的贝叶斯遗传关联分析
- 批准号:
10643463 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Interpretable Bayesian Non-linear statistical learning models for multi-omics data integration
用于多组学数据集成的可解释贝叶斯非线性统计学习模型
- 批准号:
10714882 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Bayesian Prediction Theory and Information Geometry for Non-regular and Quantum Statistical Models
非正则和量子统计模型的贝叶斯预测理论和信息几何
- 批准号:
23K11006 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Bayesian Mortality Estimation from Disparate Data Sources
来自不同数据源的贝叶斯死亡率估计
- 批准号:
10717177 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
iCyberPlatform - An innovative cybersecurity platform that uses AI, ML, Bayesian statistical models and the LDA algorithm to provide enhanced cyber defence against breaches
iCyberPlatform - 一个创新的网络安全平台,使用人工智能、机器学习、贝叶斯统计模型和 LDA 算法来提供针对违规的增强网络防御
- 批准号:
10037731 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Collaborative R&D
Bayesian modeling of multivariate mixed longitudinal responses with scale mixtures of multivariate normal distributions
具有多元正态分布尺度混合的多元混合纵向响应的贝叶斯建模
- 批准号:
10730714 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Bayesian Data Augmentation for Recurrent Events in Electronic Medical Records of Patients with Cancer
癌症患者电子病历中重复事件的贝叶斯数据增强
- 批准号:
10436083 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别: