Discrete Simulation of Fluid Dynamics
流体动力学的离散模拟
基本信息
- 批准号:1016578
- 负责人:
- 金额:$ 2.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-15 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conference on discrete simulation of fluid dynamics (dsfd.org) is the premier forum to discuss novel numerical methods for fluid flow including lattice gas automata (LGA), the lattice Boltzmann equation (LBE), discrete velocity methods (DVM), dissipative particle dynamics (DPD), smoothed-particle hydrodynamics (SPH), direct simulation Monte Carlo (DSMC), stochastic rotation dynamics (SRD), molecular dynamics (MD), and hybrid methods. The 19. meeting is held July 5-9, 2010 in Rome. Because of the significant cost of airfare underfunded researchers need additional support to attend meeting. The NSF funds provide partial support for 18 junior faculty members, postdocs and students from the US to present their research at this meeting. A local committee at North Dakota State University selected the travel support based on need, whether the applicant belongs to an underrepresented group, and the scientific soundness of the proposed research presentation.Advances in materials, nanotechnology, information technology and biotechnology increasingly rely on novel numerical algorithms. So the training of students and postdocs who are developing the next generation of these methods is of paramount importance. This grant provides the most promising young researchers with the opportunity to learn about the newest developments from their peers, to exchange ideas with researchers who share similar interests, and the opportunity to present their own research results at a specialized conference in the field of novel numerical algorithms for the simulation of fluid dynamics.
流体动力学离散模拟会议(dsfd.org)是讨论流体流动的新数值方法的首要论坛,包括格子气自动机(LGA)、格子玻尔兹曼方程(LBE)、离散速度方法(DVM)、耗散粒子动力学(DPD)、光滑粒子流体动力学(SPH)、直接模拟蒙特卡罗(DSMC)、随机旋转动力学(SRD)、分子动力学(MD)、和混合方法。19号会议将于2010年7月5日至9日在罗马举行。由于机票费用高昂,资金不足的研究人员需要额外支助才能出席会议。NSF基金为来自美国的18名初级教师,博士后和学生提供部分支持,以在这次会议上展示他们的研究。北达科他州州立大学的一个地方委员会根据申请人的需要、申请人是否属于代表性不足的群体以及拟议研究报告的科学合理性来选择旅行支持。材料、纳米技术、信息技术和生物技术的进步越来越依赖于新颖的数值算法。因此,对正在开发下一代这些方法的学生和博士后的培训至关重要。该补助金为最有前途的年轻研究人员提供了从同行那里了解最新发展的机会,与具有相似兴趣的研究人员交流思想,并有机会在流体动力学模拟的新型数值算法领域的专门会议上展示自己的研究成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Wagner其他文献
NBER WORKING PAPER SERIES PAID LEAVE PAYS OFF: THE EFFECTS OF PAID FAMILY LEAVE ON FIRM PERFORMANCE
NBER 系列工作论文《带薪休假带来回报:带薪家事假对公司业绩的影响》
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Benjamin Bennett;Isil Erel;L. Stern;Zexi Wang;Philip Bond;Alex Edmans;Shan Ge;Will Gornall;Sabrina Howell;Jason Lee;Jack Liebersohn;Claudio Loderer;Hanno Lustig;A. Manconi;Richard Ogden;George Nurisso;Christopher A. Parsons;Paola Sapienza;Miriam Schwartz;Neal Stoughton;René M. Stulz;C. V. Effenterre;Alexander Wagner;M. Weisbach;Mark M. Westerfield;M. Wittry;Warren Buffett - 通讯作者:
Warren Buffett
To Be, or Not to Be Stateful: Post-Quantum Secure Boot using Hash-Based Signatures
是否有状态:使用基于哈希的签名的后量子安全启动
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Alexander Wagner;Felix Oberhansl;M. Schink - 通讯作者:
M. Schink
JINR Open Access Repository based on the JOIN² Platform
基于 JOIN² 平台的 JINR 开放访问存储库
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
I. Filozova;Tatyana Zaikina;G. Shestakova;R. Semenov;Martin Köhler;Alexander Wagner;Laura Baracchi - 通讯作者:
Laura Baracchi
Forensic Evidence and Criminal Justice Outcomes in a Statewide Sample of Sexual Assault Cases
全州性侵犯案件样本中的法医证据和刑事司法结果
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
T. Cross;Megan A. Alderden;Alexander Wagner;L. Sampson;Brittany. Peters;Meredith L Spencer;Kaitlin Lounsbury - 通讯作者:
Kaitlin Lounsbury
Faulting Winternitz One-Time Signatures to Forge LMS, XMSS, or SPHINCS+ Signatures
攻击 Winternitz 一次性签名来伪造 LMS、XMSS 或 SPHINCS 签名
- DOI:
10.1007/978-3-031-40003-2_24 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alexander Wagner;Vera Wesselkamp;Felix Oberhansl;M. Schink;Emanuele Strieder - 通讯作者:
Emanuele Strieder
Alexander Wagner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Wagner', 18)}}的其他基金
Discrete Simulation of Fluid Dynamics Conference
流体动力学离散模拟会议
- 批准号:
1136777 - 财政年份:2011
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
- 批准号:
2347497 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Frictional fluid dynamics of granular flows; uniting experiments, simulation and theory
颗粒流的摩擦流体动力学;
- 批准号:
EP/X028771/1 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Fellowship
A Study for Sketch-Driven Fluid Simulation in Computer Graphics
计算机图形学中草图驱动流体模拟的研究
- 批准号:
23K18514 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Explore Impacts of Head Motion on Cerebrospinal Fluid Dynamics using Simulation and Real-Time Medical Imaging
使用仿真和实时医学成像探索头部运动对脑脊液动力学的影响
- 批准号:
2232598 - 财政年份:2022
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Creating Cardiac Simulation Models with Fluid Dynamics
利用流体动力学创建心脏模拟模型
- 批准号:
573080-2022 - 财政年份:2022
- 资助金额:
$ 2.25万 - 项目类别:
University Undergraduate Student Research Awards
Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
- 批准号:
RGPIN-2019-04798 - 财政年份:2022
- 资助金额:
$ 2.25万 - 项目类别:
Discovery Grants Program - Individual
Reducing risks and costs of in-stream tidal energy using multi-scale computational fluid dynamic simulation
使用多尺度计算流体动力学模拟降低河内潮汐能的风险和成本
- 批准号:
RGPIN-2020-04704 - 财政年份:2022
- 资助金额:
$ 2.25万 - 项目类别:
Discovery Grants Program - Individual
A computer simulation study to unveil fluid behavior of the beam-on target of a fusion neutron source
揭示聚变中子源射束目标流体行为的计算机模拟研究
- 批准号:
22K03579 - 财政年份:2022
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Explicit method for unsteady fluid dynamics simulation
非定常流体动力学模拟的显式方法
- 批准号:
21K18770 - 财政年份:2021
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Modeling and Simulation of Interacting Wings: Collective Dynamics in Inertial Fluid Flows
相互作用机翼的建模和仿真:惯性流体流动的集体动力学
- 批准号:
2108839 - 财政年份:2021
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant