Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems

跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化

基本信息

  • 批准号:
    RGPIN-2019-04798
  • 负责人:
  • 金额:
    $ 6.63万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Modelling and simulation of coupled, multi-scale, multi-physics phenomena are crucial for the design and optimization of novel, complex engineered systems. For instance, cutting-edge developments in battery technologies, enabling the electric vehicle (EV) revolution, require consideration of thermal, electrical, and chemical phenomena and their impact at the component and system levels. Similarly, transformative tissue engineering and organ regeneration technologies seek to maximize yield by effecting precise control of cells' chemical, biological and mechanical environments at the micro- and macro-scale. In all these applications, thermal and fluid flow phenomena are key to system performance, yet simultaneous consideration of other physical domains (electrical, chemical, biological) is needed for accurate predictions of system performance. We will develop a methodology for multi-scale, multi-physics modeling, simulation and optimization for these and other applications, where performance is both enabled and constrained by tight, non-linear coupling between multiple physical phenomena across multiple length/time scales. In particular, we will focus on applications in (a) high-performance materials and structures for electronics (transistors) and energy storage (batteries), (b) thermo-electro-chemical management of intelligent batteries for EVs, and (c) tissue engineering technologies for organ regeneration. Powered by the proposed methodology, we will (i) increase our understanding of the physical processes underlying these applications at the nano-, meso- and macro-scales, through both simulations and experiments, (ii) optimize the performance of battery cells and tissue bioreactors and experimental protocols, and (iii) train the next generation of engineers that will support Canada's global technological leadership, leveraging our lab's unique position as a collaborative research hub for multiple engineering and biomedical disciplines. The outcomes of this project will allow designers to tailor system geometry, materials, structures and operating conditions across multiple length scales to revolutionize system performance. Leveraging this knowledge, engineers across the globe can unleash their potential and creativity to envision innovative designs and rapidly test them with state-of-the-art computer simulations instead of costly, time-consuming experiments.
耦合,多尺度的多物理现象的建模和模拟对于新颖,复杂的工程系统的设计和优化至关重要。例如,电池技术的尖端发展,实现电动汽车革命(EV)革命,需要考虑热,电和化学现象及其在组件和系统水平上的影响。同样,转化组织工程和器官再生技术试图通过在微观和宏观尺度上对细胞的化学,生物学和机械环境进行精确控制,以最大程度地提高产量。在所有这些应用中,热和流体流现象是系统性能的关键,但需要同时考虑其他物理领域(电气,化学,生物学)来准确地预测系统性能。我们将开发一种用于对这些和其他应用程序的多尺度,多物理建模,仿真和优化的方法,在这种方法中,性能既可以通过多个长度/时间尺度上的多个物理现象之间的紧密,非线性耦合来启用和约束。特别是,我们将重点关注(a)电子设备(晶体管)和能源存储(电池)的高性能材料和结构,(b)电动汽车的智能电池的热电学管理,以及(c)器官再生的组织工程技术。由提议的方法提供支持,(i)通过模拟和实验,(ii)优化电池单元和组织生物反应器和实验协议的性能以及(iii),(iii)将支持加拿大的领导力,培训加拿大的全局技术,通过模拟和实验,通过模拟和实验来提高对在纳米,中和宏观尺度上的身体过程的理解,(ii)优化用于多个工程和生物医学学科。该项目的结果将使设计师能够跨多个长度范围量身定制系统的几何形状,材料,结构和操作条件,以彻底改变系统性能。利用这些知识,全球工程师可以释放其潜力和创造力,以设想创新的设计,并通过最先进的计算机模拟快速测试它们,而不是昂贵的,耗时的实验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amon, Cristina其他文献

Cell Inertia: Predicting Cell Distributions in Lung Vasculature to Optimize Re-endothelialization.
  • DOI:
    10.3389/fbioe.2022.891407
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Chan, Jason K. D.;Chadwick, Eric A.;Taniguchi, Daisuke;Ahmadipour, Mohammadali;Suzuki, Takaya;Romero, David;Amon, Cristina;Waddell, Thomas K.;Karoubi, Golnaz;Bazylak, Aimy
  • 通讯作者:
    Bazylak, Aimy
Proximal probes based nanorobotic drawing of polymer micro/nanofibers
  • DOI:
    10.1109/tnano.2006.880453
  • 发表时间:
    2006-09-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Nain, Amrinder Singh;Amon, Cristina;Sitti, Metin
  • 通讯作者:
    Sitti, Metin
Dry Spinning Based Spinneret Based Tunable Engineered Parameters (STEP) Technique for Controlled and Aligned Deposition of Polymeric Nanofibers
  • DOI:
    10.1002/marc.200900204
  • 发表时间:
    2009-08-18
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Nain, Amrinder S.;Sitti, Metin;Amon, Cristina
  • 通讯作者:
    Amon, Cristina
Control of cell behavior by aligned micro/nanofibrous biomaterial scaffolds fabricated by spinneret-based tunable engineered parameters (STEP) technique
  • DOI:
    10.1002/smll.200800101
  • 发表时间:
    2008-08-01
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Nain, Amritider S.;Phillippi, Julie A.;Amon, Cristina
  • 通讯作者:
    Amon, Cristina
The Effect of Geometric and Hemodynamic Parameters on Blood Flow Efficiency in Repaired Tetralogy of Fallot Patients
  • DOI:
    10.1007/s10439-021-02771-6
  • 发表时间:
    2021-04-09
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Louvelle, Leslie;Doyle, Matthew;Amon, Cristina
  • 通讯作者:
    Amon, Cristina

Amon, Cristina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amon, Cristina', 18)}}的其他基金

Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
  • 批准号:
    RGPIN-2019-04798
  • 财政年份:
    2021
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
  • 批准号:
    RGPIN-2019-04798
  • 财政年份:
    2020
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
  • 批准号:
    RGPIN-2019-04798
  • 财政年份:
    2019
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Bioreactors for Evaluation and Systematic Optimization of Decellularization and Recellularization of the Lung and Trachea
用于肺和气管脱细胞和再细胞化评估和系统优化的先进生物反应器
  • 批准号:
    523396-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Collaborative Health Research Projects
Advanced Bioreactors for Evaluation and Systematic Optimization of Decellularization and Recellularization of the Lung and Trachea
用于肺和气管脱细胞和再细胞化评估和系统优化的先进生物反应器
  • 批准号:
    523396-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Collaborative Health Research Projects
Thermal Management of Ultra-high-power Converters for Fast Charging of Electric Vehicles**
用于电动汽车快速充电的超高功率转换器的热管理**
  • 批准号:
    537317-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Engage Grants Program
Hierarchical Multi-scale Modelling of Thermal/Fluid Transport Processes in Energy-intensive Applications
能源密集型应用中热/流体传输过程的分层多尺度建模
  • 批准号:
    RGPIN-2014-06128
  • 财政年份:
    2018
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Hierarchical Multi-scale Modelling of Thermal/Fluid Transport Processes in Energy-intensive Applications
能源密集型应用中热/流体传输过程的分层多尺度建模
  • 批准号:
    RGPIN-2014-06128
  • 财政年份:
    2017
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Toward portable ex-vivo lung perfusion devices
走向便携式离体肺灌注装置
  • 批准号:
    502743-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Engage Grants Program
Hierarchical Multi-scale Modelling of Thermal/Fluid Transport Processes in Energy-intensive Applications
能源密集型应用中热/流体传输过程的分层多尺度建模
  • 批准号:
    462056-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements

相似国自然基金

腺相关病毒改造株PHP.eB和9P31穿过血脑屏障的受体识别机制研究
  • 批准号:
    32301011
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
闪电通道熄灭和多种击穿过程的仿真再现及其决定性因素的模拟研究
  • 批准号:
    42275075
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
闪电通道熄灭和多种击穿过程的仿真再现及其决定性因素的模拟研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
低气压射频等离子体击穿过程的数值模拟研究
  • 批准号:
    12275095
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
低气压射频等离子体击穿过程的数值模拟研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Bridging the Space-Time Continuum to Investigate How Biodiversity Scales Across Subterranean Systems
合作研究:弥合时空连续体,研究生物多样性如何在地下系统中扩展
  • 批准号:
    2204670
  • 财政年份:
    2022
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Bridging the Space-Time Continuum to Investigate How Biodiversity Scales Across Subterranean Systems
合作研究:弥合时空连续体,研究生物多样性如何在地下系统中扩展
  • 批准号:
    2204671
  • 财政年份:
    2022
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Standard Grant
Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
  • 批准号:
    RGPIN-2019-04798
  • 财政年份:
    2021
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
  • 批准号:
    RGPIN-2019-04798
  • 财政年份:
    2020
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Polymer Physics Across Scales: Bridging Atomistic and Coarse-Grained Polymer Models
跨尺度的聚合物物理:桥接原子和粗粒聚合物模型
  • 批准号:
    1855334
  • 财政年份:
    2019
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了