Risk Properties of Estimators and the Size of Tests in Discontinuous Models

不连续模型中估计量的风险属性和测试规模

基本信息

  • 批准号:
    1022929
  • 负责人:
  • 金额:
    $ 2.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2010-03-31
  • 项目状态:
    已结题

项目摘要

This project derives explicit formulae for asymptotic risk measures for estimators and asymptotic size for tests under high level assumptions that are applicable to a very wide class of models with discontinuities. A very general unifying theory is provided that applies to many models that have previously been studied in the literature only on a case by case basis.Estimators and test statistics in many Econometric models have asymptotic distributions that depend on the values of nuisance parameters. The asymptotic distribution often changes discontinuously as the nuisance parameter approaches a certain discontinuity point. The investigator and Donald Andrews and the investigator (2005a-e) studied the asymptotic size of tests in such discontinuous models. Their past work provides an explicit formula for the size of tests and demonstrates that many tests used in practice are extremely size distorted. The first goal of this project is to investigate the risk properties of estimators in discontinuous models with nuisance parameters and a loss function. The project derives an explicit formula for the asymptotic maximal risk. In many problems encountered in applied statistics, there does not exist an optimal estimator. For these problems the risk formula can be used to rank alternative estimators according to their maximal risk. The risk formula is applied to models with lack of identification at some point(s) in the parameter space, such as models with weak instruments and threshold autoregressive models, scalar and vector autoregressive (VAR) models with roots that may be close to unity, models where a parameter may be near a boundary, models with parameters defined by moment inequalities, models based on super-efficient or shrinkage estimators, models based on post-model selection estimators, predictive regression models with nearly-integrated regressors, models with non-differentiable functions of parameters, and models with differentiable functions of parameters that have zero first-order derivatives.The second goal of this project is to apply the explicit formula for the size of tests to areas that require intensive computational effort. These include tests of Granger causality in VAR models, tests of stochastic dominance for random variables with finite support, and one-sided Kolmogorov-Smirnov tests of incomplete models for random variables with finite support and post Hausman test inference.Broader impact: This research provides testing procedures that have correct size and estimators with favorable relative or even optimal risk properties in models that are commonly used by applied researchers. The techniques introduced here can be used in more applied Economic fields, such as Finance, Industrial Organization or Labor Economics. The results of this work will be submitted to leading Economic journals and presented in research seminars. Graduate students will participate in the project.
这个项目推导出了高水平假设下的估计量的渐近风险度量和检验的渐近大小的显式公式,这些假设适用于一类非常广泛的具有不连续性的模型。 一个非常普遍的统一理论,适用于许多模型,以前已经在文献中研究的情况下,在case-by-casesbasis.Estimators和许多计量经济模型的检验统计量有渐近分布,依赖于滋扰参数的值。 当干扰参数接近某个不连续点时,渐近分布常常不连续地变化。 研究者和Donald Andrews以及研究者(2005 a-e)研究了这种不连续模型中检验的渐近大小。 他们过去的工作提供了一个明确的公式的大小测试,并表明,许多测试在实践中使用的是非常大小扭曲。 本计画的第一个目标是研究具有干扰参数和损失函数的不连续模型中估计量的风险性质。 该项目推导出了渐近最大风险的显式公式。 在应用统计学中遇到的许多问题中,不存在最优估计量。 对于这些问题的风险公式可以用来排序的替代估计,根据他们的最大风险。 风险公式适用于在参数空间中的某些点处缺乏识别的模型,例如具有弱工具和阈值自回归模型的模型、具有可能接近于1的根的标量和向量自回归(VAR)模型、参数可能接近边界的模型、具有由矩不等式定义的参数的模型、基于超有效或收缩估计的模型,基于后模型选择估计量的模型、具有近似积分回归量的预测回归模型、具有参数不可微函数的模型以及具有一阶导数为零的参数可微函数的模型。 其中包括VAR模型中的格兰杰因果关系检验、有限支持随机变量的随机优势检验、有限支持随机变量的不完全模型的单侧Kolmogorov-Smirnov检验和后Hausman检验推断。这项研究提供了测试程序,有正确的大小和估计有利的相对甚至最佳的风险属性的模型,是常用的应用研究人员本文所介绍的技术可以应用于更实用的经济学领域,如金融学、产业组织学或劳动经济学。这项工作的结果将提交给领先的经济期刊,并在研究研讨会上发表。研究生将参与该项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrik Guggenberger其他文献

GEL statistics under weak identification
弱识别下的GEL统计
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrik Guggenberger;Joaquim J. S. Ramalho;Richard J. Smith
  • 通讯作者:
    Richard J. Smith
THE IMPACT OF A HAUSMAN PRETEST ON THE ASYMPTOTIC SIZE OF A HYPOTHESIS TEST
豪斯曼预检验对假设检验渐近规模的影响
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Patrik Guggenberger
  • 通讯作者:
    Patrik Guggenberger
ON THE ASYMPTOTIC SIZE DISTORTION OF TESTS WHEN INSTRUMENTS LOCALLY VIOLATE THE EXOGENEITY ASSUMPTION
当仪器局部违反外生性假设时,检验的渐近尺寸失真
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Patrik Guggenberger
  • 通讯作者:
    Patrik Guggenberger
Generalized Empirical Likelihood Tests under Partial, Weak, and Strong Identification
部分、弱和强识别下的广义经验似然检验
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrik Guggenberger
  • 通讯作者:
    Patrik Guggenberger
BIAS-REDUCED LOG-PERIODOGRAM AND WHITTLE ESTIMATION OF THE LONG-MEMORY PARAMETER WITHOUT VARIANCE INFLATION
没有方差膨胀的长记忆参数的偏差减少对数周期图和削减估计
  • DOI:
    10.1017/s0266466606060403
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Patrik Guggenberger;Yixiao Sun
  • 通讯作者:
    Yixiao Sun

Patrik Guggenberger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patrik Guggenberger', 18)}}的其他基金

Robust Inference for Nonlinear Moment Condition Models with Possible Weak Identification
具有可能弱识别的非线性力矩条件模型的鲁棒推理
  • 批准号:
    1462707
  • 财政年份:
    2015
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
On the Relative Robustness of the Size of Tests to Local Model Violations
关于局部模型违规测试规模的相对鲁棒性
  • 批准号:
    1346827
  • 财政年份:
    2013
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
On the Relative Robustness of the Size of Tests to Local Model Violations
关于局部模型违规测试规模的相对鲁棒性
  • 批准号:
    1021101
  • 财政年份:
    2010
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
Risk Properties of Estimators and the Size of Tests in Discontinuous Models
不连续模型中估计量的风险属性和测试规模
  • 批准号:
    0748922
  • 财政年份:
    2008
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant

相似海外基金

A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
  • 批准号:
    DP240102053
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Training Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Continuing Grant
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
  • 批准号:
    2401482
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
  • 批准号:
    2404011
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
  • 批准号:
    2343416
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了