Collaborative Research: Statistical Methods for Quantifying Autogenic Processes in Sedimentary Basins

合作研究:量化沉积盆地自生过程的统计方法

基本信息

  • 批准号:
    1024443
  • 负责人:
  • 金额:
    $ 11.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-03-01 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

Collaborative Research: Statistical methods for quantifying autogenic processes in sedimentary basinsKyle Straub, Tulane University, EAR-1024443Elizabeth Hajek, Penn State University, EAR-1024710ABSTRACTProject summaryAncient sedimentary basins are archives of past climate, tectonic, and land-surface changes on Earth. These deposits also contain important energy and water reserves and will serve as hosts for carbon capture and storage. In order to manage these resources and understand sedimentary deposits, improved methods are needed for interpreting and predicting stratigraphic patterns. Internally generated (autogenic) dynamics in sedimentary systems can generate stratigraphy that mimics patterns produced by tectonics, climate, and sea level changes. Statistical methods are needed to filter autogenic signals from sedimentary deposits in order fully understand and model stratigraphy. This project aims to determine the primary controls on autogenic sedimentation patterns and develop methods for identifying and filtering autogenic signals from the stratigraphic record. Through a combination of experiments, numerical modeling, and fieldwork, PIs will map and measure stratigraphic organization produced by rivers and deltas with different sizes and characteristic avulsion timescales. This work will advance our ability to recover meaningful data about autogenic processes from stratigraphic datasets, isolate preserved signals of changing environmental conditions in ancient deposits, and generate predictive stratigraphic models in alluvial basins.Broader ImpactsUsing the stratigraphic record to understand the evolution of river and delta environments will improve our ability to manage natural resources and forecast the response of deltas to climate change. In an effort to increase public understanding about how sediment is transported through river deltas and how these deltas evolve through time PIs will hold short courses at Tulane University?s Sediment Dynamics Laboratory for high school students and teachers. These courses will be developed in collaboration with Abramson Science & Technology Charter School in New Orleans, which was founded after Hurricane Katrina to improve the science and math education of underprivileged communities in New Orleans. During these interactive courses students will build an experimental delta and explore its reaction to changing environmental conditions, including rising sea level. The faculty, graduate students, and undergraduates working on this research project will facilitate these classes. Additionally, funding for this project will support two PhD students and several undergraduate researchers and will help two early career faculty establish successful research programs.
合作研究:量化沉积盆地中自生过程的统计方法杜兰大学的Kyle Straub,EAR-1024443宾夕法尼亚州立大学的伊丽莎白·哈耶克,EAR-1024710项目摘要古代沉积盆地是地球上过去气候、构造和陆地表面变化的档案。这些沉积物还包含重要的能源和水储备,并将作为碳捕获和储存的宿主。为了管理这些资源和了解沉积沉积,需要改进解释和预测地层模式的方法。沉积系统中的内部生成(自生)动力学可以生成模仿构造、气候和海平面变化所产生的模式的地层学。为了充分理解地层学和建立地层学模型,需要用统计方法来过滤沉积沉积中的自生信号。该项目旨在确定自生沉积模式的主要控制因素,并开发从地层记录中识别和过滤自生信号的方法。通过实验、数值模拟和野外工作的结合,PI将绘制和测量不同大小和特征撕裂时间尺度的河流和三角洲产生的地层组织。这项工作将提高我们从地层数据集中恢复有关自生过程的有意义数据的能力,分离古代沉积物中保存的环境条件变化的信号,并在冲积盆地中生成预测性地层模型。广泛影响利用地层记录了解河流和三角洲环境的演变将提高我们管理自然资源和预测三角洲对气候变化的响应的能力。为了增加公众对沉积物如何通过河流三角洲以及这些三角洲如何随时间演变的了解,PI将在杜兰大学举办短期课程?S沉积物动力学实验室,面向高中学生和教师。这些课程将与新奥尔良的艾布拉姆森科学与技术特许学校合作开发,该学校在卡特里娜飓风过后成立,旨在改善新奥尔良贫困社区的科学和数学教育。在这些互动课程中,学生们将建立一个实验性的三角洲,并探索它对不断变化的环境条件的反应,包括海平面上升。从事这一研究项目的教职员工、研究生和本科生将为这些课程提供便利。此外,该项目的资金将支持两名博士生和几名本科生研究人员,并将帮助两名早期职业教师建立成功的研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kyle Straub其他文献

Kyle Straub的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kyle Straub', 18)}}的其他基金

Collaborative Research: Facility: CSDMS: Engaging a thriving community of practice in Earth-surface dynamics
合作研究:设施:CSDMS:参与地球表面动力学领域蓬勃发展的实践社区
  • 批准号:
    2148506
  • 财政年份:
    2022
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: CyberTraining: Pilot: A Cybertraining Program to Advance Knowledge and Equity in the Geosciences
合作研究:网络培训:试点:促进地球科学知识和公平的网络培训计划
  • 批准号:
    2118272
  • 财政年份:
    2021
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: OpenEarthscape - Transformative Cyberinfrastructure for Modeling and Simulation in the Earth-Surface Science Communities
合作研究:框架:OpenEarthscape - 用于地球表面科学界建模和仿真的变革性网络基础设施
  • 批准号:
    2103815
  • 财政年份:
    2021
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental Investigation of Morphodynamic Coupling between River Deltas and Marshes
合作研究:河流三角洲与沼泽形态动力耦合的实验研究
  • 批准号:
    1848994
  • 财政年份:
    2019
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Continuing Grant
Signals of Relative Sea Level perturbations: Defining the divide between signal shredding versus preservation in the stratigraphic record.
相对海平面扰动信号:定义信号粉碎与地层记录保存之间的区别。
  • 批准号:
    1424312
  • 财政年份:
    2014
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Reconstructing ancient passive margin dynamics by relating geomorphic and stratigraphic surfaces: a combined laboratory and field study
合作研究:通过关联地貌和地层表面重建古代被动边缘动力学:实验室和实地研究相结合
  • 批准号:
    1049387
  • 财政年份:
    2011
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247795
  • 财政年份:
    2023
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247794
  • 财政年份:
    2023
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
  • 批准号:
    2242084
  • 财政年份:
    2023
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
  • 批准号:
    2327625
  • 财政年份:
    2023
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308445
  • 财政年份:
    2023
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 11.94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了