Stochastic Prediction for the Design and Management of Interacting Complex Systems
交互复杂系统设计和管理的随机预测
基本信息
- 批准号:1025043
- 负责人:
- 金额:$ 31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research considers systems that combine social networks and sensor networks with complicated interactions involving hierarchical structure. To design and analyze such complex distributed systems, information-theoretical methods will be combined with advanced Bayesian and non-Bayesian statistical techniques such as spatiotemporal nonlinear estimation and prediction, advanced changepoint detection and estimation methods, and multihypothesis decision-making strategies. Advanced data fusion methods at different levels will be proposed and tested. Distributed networks will be modeled by quite general coupled fractional hidden Markov models adapted to allow for nonlinear prediction and detection-classification. The spaces in which estimation, prediction, and classification are performed may be both metric and symbolic, thus allowing for the effective incorporation of sensor (metric) and social (symbolic) networks as a part of a large-scale distributed system. Design of complex multi-level hierarchical systems, including systems that search for patterns to identify developing or immediate threats, is vitally important for various areas, including national security, environmental monitoring, SmartGrid and other critical infrastructures. This research will develop novel approaches for automated efficient fusion of information from multiple sources or/and from multiple levels of hierarchy of complex systems that will enable these systems to achieve high accuracy in detection of changes in trends, prediction, and recognition. Probabilistic modeling of networks will be coupled with novel approaches to event pattern recognition, change detection and information integration/fusion in complex, multisource-multisensor distributed heterogeneous systems. Both mathematical formulations and solution algorithms will be developed.
本研究考虑将社交网络和传感器网络与涉及分层结构的复杂交互相结合的联合收割机系统。为了设计和分析这种复杂的分布式系统,信息理论方法将与先进的贝叶斯和非贝叶斯统计技术相结合,如时空非线性估计和预测,先进的变点检测和估计方法,以及多假设决策策略。将提出和测试不同级别的先进数据融合方法。分布式网络将建模相当一般的耦合分数隐马尔可夫模型,适合允许非线性预测和检测分类。 执行估计、预测和分类的空间可以是度量的和符号的,从而允许将传感器(度量)和社交(符号)网络有效地结合为大规模分布式系统的一部分。设计复杂的多级分层系统,包括搜索模式以识别发展中或直接威胁的系统,对于包括国家安全,环境监测,智能电网和其他关键基础设施在内的各个领域至关重要。这项研究将开发新的方法,用于自动有效地融合来自多个来源或/和复杂系统的多个层次的信息,使这些系统能够实现高精度的趋势变化检测,预测和识别。 网络的概率建模将与事件模式识别,变化检测和信息集成/融合在复杂的,多源多传感器分布式异构系统的新方法相结合。数学公式和解决方案的算法将被开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Ghanem其他文献
Damage detection and localization in sealed spent nuclear fuel dry storage canisters using multi-task machine learning classifiers
使用多任务机器学习分类器对密封乏燃料干储存桶进行损伤检测与定位
- DOI:
10.1016/j.ress.2024.110446 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:11.000
- 作者:
Anna Arcaro;Bozhou Zhuang;Bora Gencturk;Roger Ghanem - 通讯作者:
Roger Ghanem
Transient anisotropic kernel for probabilistic learning on manifolds
- DOI:
10.1016/j.cma.2024.117453 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Christian Soize;Roger Ghanem - 通讯作者:
Roger Ghanem
Switching diffusions for multiscale uncertainty quantification
多尺度不确定性量化的切换扩散
- DOI:
10.1016/j.ijnonlinmec.2024.104793 - 发表时间:
2024 - 期刊:
- 影响因子:3.2
- 作者:
Zheming Gou;Xiaohui Tu;Sergey V. Lototsky;Roger Ghanem - 通讯作者:
Roger Ghanem
Effect of experimental noise on internal damage detection of sealed spent nuclear fuel canisters
- DOI:
10.1007/s00366-025-02176-2 - 发表时间:
2025-06-28 - 期刊:
- 影响因子:4.900
- 作者:
Anna Arcaro;Bora Gencturk;Roger Ghanem;Bozhou Zhuang - 通讯作者:
Bozhou Zhuang
Spectral Stochastic Finite Element Method for Log-Normal Uncertainty
求解对数正态不确定性的谱随机有限元法
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Riki Honda;Roger Ghanem - 通讯作者:
Roger Ghanem
Roger Ghanem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Ghanem', 18)}}的其他基金
Collaborative Research: RIPS Type 1: Human Geography Motifs to Evaluate Infrastructure Resilience
合作研究:RIPS 类型 1:评估基础设施弹性的人文地理学主题
- 批准号:
1441190 - 财政年份:2014
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Accelerating Innovation in Agent-Based Simulations: Application to Complex Socio-Behavioral Phenomena
EAGER/协作研究:加速基于代理的模拟创新:在复杂社会行为现象中的应用
- 批准号:
1002517 - 财政年份:2010
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Workshop on Stochastic Multiscale Methods: Mathematical Analysis and Algorithms; August 2009, Los Angeles, CA
随机多尺度方法研讨会:数学分析和算法;
- 批准号:
0917661 - 财政年份:2009
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Collaborative Research: Uncertainty quantification for petascale simulation of carbon sequestration through fast ultra-scalable stochastic finite element methods.
合作研究:通过快速超可扩展随机有限元方法对千万亿级碳封存模拟进行不确定性量化。
- 批准号:
0904754 - 财政年份:2009
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Opportunities and Challenges in Uncertainty Quantification for Complex Interacting Systems
复杂相互作用系统不确定性量化的机遇和挑战
- 批准号:
0849537 - 财政年份:2008
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Computational System for Probability Based Multi-Scale Model of Ductile Fracture in Heterogeneous Metals and Alloys
合作研究:异种金属和合金中基于概率的延性断裂多尺度模型集成计算系统
- 批准号:
0728304 - 财政年份:2007
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
AMC-SS: Computational Algorithms and Reduced Models for Stochastic PDEs
AMC-SS:随机偏微分方程的计算算法和简化模型
- 批准号:
0512231 - 财政年份:2005
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Workshop on Uncertainty Quantification and Error Estimation
不确定性量化与误差估计研讨会
- 批准号:
0351706 - 财政年份:2003
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Decision Support for Flow in Porous Media: Optimal Sampling for Data Assimilation
多孔介质流动的决策支持:数据同化的最佳采样
- 批准号:
9870005 - 财政年份:1998
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
相似海外基金
Artificial Intelligence Model for Accurate Prediction of Energy Consumption in Buildings at design stage (E-MAP)
设计阶段准确预测建筑能耗的人工智能模型(E-MAP)
- 批准号:
10081365 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Collaborative R&D
Property prediction and functional design of quantified non-integer dimensional nanoscale materials
量化非整数维纳米材料的性能预测和功能设计
- 批准号:
23K04544 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced Flow Prediction of Scramjet Intakes and Data-Driven Inverse Design
超燃冲压发动机进气口的高级流量预测和数据驱动的逆向设计
- 批准号:
22KJ2460 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Design of dyestuffs for difficult-to-dye textiles using chemoinformatics methods and prediction of their colour fastness
利用化学信息学方法设计难染纺织品染料并预测其色牢度
- 批准号:
23K01993 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a high-precision fiber orientation prediction model for FRP injection-molded parts and a lightweight design method by controlling fiber orientation
开发FRP注塑件高精度纤维取向预测模型以及控制纤维取向的轻量化设计方法
- 批准号:
23K04440 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of linker design method for PROTAC based on ternary complex structure prediction
基于三元复杂结构预测的PROTAC连接子设计方法开发
- 批准号:
23K16987 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Structure Prediction and Design of Molecular Crystals with the GAtor Genetic Algorithm
利用 Gator 遗传算法进行分子晶体的结构预测和设计
- 批准号:
2131944 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
Design and development of efficient algorithms for RNA interaction structure prediction
RNA相互作用结构预测的高效算法的设计和开发
- 批准号:
RGPIN-2020-04243 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
Discovery Grants Program - Individual
First-principles design of spin conversion materials by nanostructure prediction
通过纳米结构预测第一性原理设计自旋转换材料
- 批准号:
22K04862 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effective Perception System Design Through Accurate Performance Prediction and Resource Optimization
通过准确的性能预测和资源优化进行有效的感知系统设计
- 批准号:
RGPIN-2021-03881 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
Discovery Grants Program - Individual