Workshop on Stochastic Multiscale Methods: Mathematical Analysis and Algorithms; August 2009, Los Angeles, CA
随机多尺度方法研讨会:数学分析和算法;
基本信息
- 批准号:0917661
- 负责人:
- 金额:$ 2.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Exchanging information across scales is one of the most significant challenges in multiscale modeling and simulation. By necessity, and naturally within a multiscale context, information is truncated as it is presented to a coarser scale, and is enriched as it traverses the opposite path. Information is lost and corrupted as it is, respectively, upscaled and downscaled. Mitigating these errors can be set on rigorous ground through a probabilistic description of information, whence finite-dimensional approximations of measures provides an analytical path for describing the coarsening and refining of information. Stochastic analysis, therefore, provides a rational context for the analysis of multiscale methods. This workshop on "Stochastic Multiscale Methods: Mathematical Analysis and Algorithms"will serve to define challenges and opportunities in the development of stochastic multiscale methods for various problems in science and engineering. Issues of uncertainty quantification, model validation, and optimization under uncertainty have taken center stage in many areas of science and engineering. Likewise, multiscale modeling and computing capabilities are becoming the standard against which model-based predictions are gauged. It thus behooves the scientific community, at this juncture, to elucidate the mathematical foundation of stochastic multiscale concepts so as to ensure a steady evolution of scientific capabilities as engines of economical growth societal well-being. This workshop will initiate a dialog between mathematicians, mechanicians, and computational scientists that will lay the foundation for an accelerated growth in stochastic multiscale methods.Rapid growth in computational resources has heightened the expectation that scientific knowledge can indeed be a driver for societal well-being and betterment. At the same time, our ability to measure the natural and social world around has significantly increased, aided by technological development in sensors, the internet, and other modalities of communication. Science is thus faced, simultaneously, with a complex description of reality at an unprecendented resolution, and the possibility to describe this reality with mathematical models of increasing complexity.Multiscale descriptions of physical problems can be viewed as attempts to take advantage of these new oppotunities, while tackling the conceptual challenges they inevitably present.The communities of stochastic analysis and computational science have evolved essentially along separate paths. The path forward, however, in the direction of disruptive scientific impact, requires significant exchange andcollaboration. It is the intent of this Workshop ``Stochastic Multiscale Methods:Mathematical Analysis and Algorithms'' to bring together leading researchers in these two fields with view to delineate new horizons and forge new synergies that will accelerate the evolution of multiscale capabilities to become an enabler of scientific and economic progress.
跨尺度信息交换是多尺度建模和仿真中最重要的挑战之一。 在多尺度环境中,信息在呈现为较粗尺度时必然被截断,而在穿过相反路径时被丰富,信息在放大和缩小时分别丢失和损坏。 减轻这些错误可以设置在严格的地面上通过概率描述的信息,其中有限维近似的措施提供了一个分析的路径来描述粗化和细化的信息。因此,随机分析为多尺度方法的分析提供了一个合理的背景。 本次研讨会的“随机多尺度方法:数学分析和算法”将有助于定义在科学和工程中的各种问题的随机多尺度方法的发展的挑战和机遇。 不确定性量化、模型验证和不确定性下的优化问题已经成为科学和工程领域的中心议题。 同样,多尺度建模和计算能力正在成为衡量基于模型的预测的标准。 因此,科学界有必要在这个节骨眼上阐明随机多尺度概念的数学基础,以确保科学能力作为经济增长和社会福祉的引擎的稳步发展。 本次研讨会将在数学家、机械学家和计算科学家之间展开对话,为随机多尺度方法的加速发展奠定基础。计算资源的快速增长提高了人们的期望,即科学知识确实可以成为社会福祉和改善的驱动力。 与此同时,在传感器、互联网和其他通信方式的技术发展的帮助下,我们测量周围自然和社会世界的能力显著提高。 因此,科学同时面临着以前所未有的分辨率对现实进行复杂描述的问题,以及用越来越复杂的数学模型来描述这种现实的可能性。物理问题的多尺度描述可以被视为利用这些新机会的尝试,同时解决它们不可避免地带来的概念挑战。随机分析和计算科学的社区已经从本质上发展起来,沿着不同的路径。然而,要想朝着颠覆性科学影响的方向前进,需要大量的交流和合作。 “随机多尺度方法:数学分析和数学方法”讲习班的目的是将这两个领域的主要研究人员聚集在一起,以描绘新的视野,形成新的协同作用,加速多尺度能力的发展,使其成为科学和经济进步的推动者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Ghanem其他文献
Damage detection and localization in sealed spent nuclear fuel dry storage canisters using multi-task machine learning classifiers
使用多任务机器学习分类器对密封乏燃料干储存桶进行损伤检测与定位
- DOI:
10.1016/j.ress.2024.110446 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:11.000
- 作者:
Anna Arcaro;Bozhou Zhuang;Bora Gencturk;Roger Ghanem - 通讯作者:
Roger Ghanem
Transient anisotropic kernel for probabilistic learning on manifolds
- DOI:
10.1016/j.cma.2024.117453 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Christian Soize;Roger Ghanem - 通讯作者:
Roger Ghanem
Switching diffusions for multiscale uncertainty quantification
多尺度不确定性量化的切换扩散
- DOI:
10.1016/j.ijnonlinmec.2024.104793 - 发表时间:
2024 - 期刊:
- 影响因子:3.2
- 作者:
Zheming Gou;Xiaohui Tu;Sergey V. Lototsky;Roger Ghanem - 通讯作者:
Roger Ghanem
Effect of experimental noise on internal damage detection of sealed spent nuclear fuel canisters
- DOI:
10.1007/s00366-025-02176-2 - 发表时间:
2025-06-28 - 期刊:
- 影响因子:4.900
- 作者:
Anna Arcaro;Bora Gencturk;Roger Ghanem;Bozhou Zhuang - 通讯作者:
Bozhou Zhuang
Spectral Stochastic Finite Element Method for Log-Normal Uncertainty
求解对数正态不确定性的谱随机有限元法
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Riki Honda;Roger Ghanem - 通讯作者:
Roger Ghanem
Roger Ghanem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Ghanem', 18)}}的其他基金
Collaborative Research: RIPS Type 1: Human Geography Motifs to Evaluate Infrastructure Resilience
合作研究:RIPS 类型 1:评估基础设施弹性的人文地理学主题
- 批准号:
1441190 - 财政年份:2014
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Accelerating Innovation in Agent-Based Simulations: Application to Complex Socio-Behavioral Phenomena
EAGER/协作研究:加速基于代理的模拟创新:在复杂社会行为现象中的应用
- 批准号:
1002517 - 财政年份:2010
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Stochastic Prediction for the Design and Management of Interacting Complex Systems
交互复杂系统设计和管理的随机预测
- 批准号:
1025043 - 财政年份:2010
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Collaborative Research: Uncertainty quantification for petascale simulation of carbon sequestration through fast ultra-scalable stochastic finite element methods.
合作研究:通过快速超可扩展随机有限元方法对千万亿级碳封存模拟进行不确定性量化。
- 批准号:
0904754 - 财政年份:2009
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Opportunities and Challenges in Uncertainty Quantification for Complex Interacting Systems
复杂相互作用系统不确定性量化的机遇和挑战
- 批准号:
0849537 - 财政年份:2008
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Computational System for Probability Based Multi-Scale Model of Ductile Fracture in Heterogeneous Metals and Alloys
合作研究:异种金属和合金中基于概率的延性断裂多尺度模型集成计算系统
- 批准号:
0728304 - 财政年份:2007
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
AMC-SS: Computational Algorithms and Reduced Models for Stochastic PDEs
AMC-SS:随机偏微分方程的计算算法和简化模型
- 批准号:
0512231 - 财政年份:2005
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Workshop on Uncertainty Quantification and Error Estimation
不确定性量化与误差估计研讨会
- 批准号:
0351706 - 财政年份:2003
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Decision Support for Flow in Porous Media: Optimal Sampling for Data Assimilation
多孔介质流动的决策支持:数据同化的最佳采样
- 批准号:
9870005 - 财政年份:1998
- 资助金额:
$ 2.49万 - 项目类别:
Continuing Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
- 批准号:
2338221 - 财政年份:2024
- 资助金额:
$ 2.49万 - 项目类别:
Continuing Grant
Performance design based on stochastic process simulation of multiscale internal structure in concrete
基于混凝土多尺度内部结构随机过程模拟的性能设计
- 批准号:
21K04211 - 财政年份:2021
- 资助金额:
$ 2.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Diversity and Universality of Multiscale Earthquake Processes and Stochastic Modeling
多尺度地震过程的多样性和普遍性与随机模拟
- 批准号:
20K14576 - 财政年份:2020
- 资助金额:
$ 2.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multiscale Analysis of Infinite-Dimensional Stochastic Systems
无限维随机系统的多尺度分析
- 批准号:
1954299 - 财政年份:2020
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Asymptotic analysis of multiscale Lévy-driven stochastic Cucker-Smale and non-linear friction models
多尺度 Lévy 驱动的随机 Cucker-Smale 和非线性摩擦模型的渐近分析
- 批准号:
418509727 - 财政年份:2018
- 资助金额:
$ 2.49万 - 项目类别:
Research Grants
NSFGEO-NERC: Multiscale Stochastic Modeling and Analysis of the Ocean Circulation
NSFGEO-NERC:海洋环流的多尺度随机建模与分析
- 批准号:
NE/R011567/1 - 财政年份:2018
- 资助金额:
$ 2.49万 - 项目类别:
Research Grant
Stochastic Constitutive Laws in Nonlinear Mechanics: Application to the Multiscale Modeling of Arterial Walls for Robust Vascular Grafting
非线性力学中的随机本构定律:在稳健血管移植的动脉壁多尺度建模中的应用
- 批准号:
1726403 - 财政年份:2017
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
NSFGEO-NERC: Multiscale Stochastic Modeling and Analysis of the Ocean Circulation
NSFGEO-NERC:海洋环流的多尺度随机建模与分析
- 批准号:
1658357 - 财政年份:2017
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Stochastic homogenization for uncertainty quantification in multiscale analysis
多尺度分析中不确定性量化的随机均质化
- 批准号:
16KT0129 - 财政年份:2016
- 资助金额:
$ 2.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a novel method for strength estimation of heterogeneous materials by multiscale stochastic stress analysis
建立多尺度随机应力分析异质材料强度估算新方法
- 批准号:
16K05995 - 财政年份:2016
- 资助金额:
$ 2.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)