CMG Collaborative Research: Ocean Modeling by Bridging Primitive and Boussinesq Equations
CMG 合作研究:通过连接原始方程和 Boussinesq 方程进行海洋建模
基本信息
- 批准号:1025422
- 负责人:
- 金额:$ 21.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While vast regions of the ocean can be treated accurately within the framework of eddy-resolving ocean models integrating simplified equations, there are comparatively small regions in which rapidly-evolving three dimensional motions are important not only for local but also for large-scale dynamics, thereby playing an important role in the multi-scale dynamics of both coastal and global oceanic flows. The flow dynamics in these small regions are complex enough not to permit an accurate approximation by simple parameterizations, but rather demand solution of the full set of equations. The objective of this project is to build a modeling framework which can handle both energetically active motions and large scale general circulations simultaneously. This research-education project is an orchestrated effort of a collaboration synthesizing expertise in both mathematics and oceanography. The blend of mathematical, computational, and geophysical expertise of the project team is central to the success of this endeavor. It is also essential to the truly interdisciplinary training of graduate and undergraduate students, who will be involved in all the stages of a research project: Modeling, mathematical analysis, discretization, validation, computation, and data analysis.To model these challenging oceanic flows, a truly multi-scale modeling framework that will employ the computationally intensive Boussinesq equations only in the small regions of intense mixing and the computationally efficient primitive equations in the rest of the fluid domain is needed. The inherent multi-scale nature of the oceanic flows considered, however, makes the development of such a modeling framework challenging, both mathematically and computationally. Indeed, one needs to address outstanding open questions, such as, the mathematical bridging of two different systems of equations, the interfacing of computational meshes of vastly varying resolutions, the quantification and modeling of uncertainty in this complex framework and the modeling of oceanic flows over a range of scales where forward and backward energy cascades coexist. This new framework comprises several significant mathematical and computational developments: (i) a new multiphysics/multiresolution modeling approach based on domain decomposition that will allow an appropriate treatment of highly varying mesh resolutions and the interfacing of the non-hydrostatic and hydrostatic flow regimes; (ii) a novel spatio-temporal filtering methodology that provides an elegant mathematical approach for bridging two different sets of equations by creating a spectrum of intermediate models filling the gap between the two sets of equations in terms of computational efficiency and physical accuracy; (iii) new modeling strategies for the uncertainty in the system generated by the inherently stochastic nature of the Boussinesq-primitive equations coupling; and (iv) state-of-the-art turbulence modeling for an appropriate treatment of the markedly different turbulence character of the Boussinesq and primitive flow regimes by taking advantage of the mathematical nature of approximate deconvolution approaches.
虽然可以在结合简化方程的涡旋解析海洋模型框架内准确处理大片海洋,但在相对较小的区域,快速演变的三维运动不仅对当地而且对大尺度动力学都很重要,从而在沿海和全球洋流的多尺度动力学中发挥重要作用。这些小区域内的流动动力学非常复杂,不能通过简单的参数化来进行精确的近似,而是需要求解整个方程组。这个项目的目标是建立一个模型框架,可以同时处理能量活跃的运动和大规模的一般环流。这个研究-教育项目是一项合作的精心策划的努力,综合了数学和海洋学方面的专业知识。项目团队的数学、计算和地球物理专业知识的融合是这项工作成功的核心。对研究生和本科生进行真正的跨学科培训也是至关重要的,他们将参与研究项目的所有阶段:建模、数学分析、离散化、验证、计算和数据分析。为了对这些具有挑战性的海洋流动进行建模,需要一个真正的多尺度建模框架,它将仅在强烈混合的小区域使用计算密集型的Boussinesq方程,而在流体领域的其余部分使用计算高效的原始方程。然而,考虑到海洋流动固有的多尺度性质,使得开发这样一个模拟框架在数学和计算上都具有挑战性。事实上,人们需要解决悬而未决的问题,例如两个不同的方程组之间的数学联系,分辨率差异很大的计算网格的连接,这一复杂框架中不确定性的量化和建模,以及在向前和向后能量级联共存的一系列尺度上的海洋流动的建模。这一新的框架包括几个重要的数学和计算发展:(1)基于区域分解的新的多物理/多分辨率建模方法,它将允许适当地处理高度变化的网格分辨率以及非静力和流体静力流态的接口;(2)新的时空过滤方法,它通过创建一系列中间模型填补两组方程之间的计算效率和物理精度的缺口,为连接两组不同的方程提供了一种优雅的数学方法;(3)针对Boussinesq-原始方程耦合固有的随机性在系统中产生的不确定性的新的建模策略;以及(Iv)最先进的湍流模拟,通过利用近似反卷积方法的数学性质,适当地处理Boussinesq和原始流型的明显不同的湍流特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinqiao Duan其他文献
Predictability in Nonlinear Dynamical Systems with Model Uncertainty
- DOI:
- 发表时间:
2008-11 - 期刊:
- 影响因子:0
- 作者:
Jinqiao Duan - 通讯作者:
Jinqiao Duan
Entrainment in bottom gravity currents over complex topography from three‐dimensional nonhydrostatic simulations
三维非静水力模拟中复杂地形上底部重力流的夹带
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
T. Özgökmen;P. Fischer;Jinqiao Duan;T. Iliescu - 通讯作者:
T. Iliescu
Large deviations for the stochastic quasigeostrophic equation with multiplicative noise
具有乘性噪声的随机准地转方程的大偏差
- DOI:
10.1063/1.3376640 - 发表时间:
2010 - 期刊:
- 影响因子:1.3
- 作者:
Desheng Yang;Jinqiao Duan - 通讯作者:
Jinqiao Duan
Ergodic dynamics of the coupled quasigeostrophic-flow-energy-balance system
耦合准地转流能量平衡系统的历经动力学
- DOI:
10.1007/s10948-008-0165-y - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
A. Du;Jinqiao Duan;H. Gao;T. Özgökmen - 通讯作者:
T. Özgökmen
A data-driven approach for discovering stochastic dynamical systems with non-Gaussian Lévy noise
- DOI:
https://doi.org/10.1016/j.physd.2020.132830 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Yang Li;Jinqiao Duan - 通讯作者:
Jinqiao Duan
Jinqiao Duan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinqiao Duan', 18)}}的其他基金
CBMS Conference: Nonlocal Dynamics--Theory, Computation and Applications
CBMS 会议:非局域动力学——理论、计算与应用
- 批准号:
1642545 - 财政年份:2017
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences--Recent Advances in the Numerical Approximation of Stochastic Partial Differential Equations
CBMS数学科学区域会议--随机偏微分方程数值逼近的最新进展
- 批准号:
0938235 - 财政年份:2010
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
U.S.-Asian Workshop on Random Dynamical Systems
美亚随机动力系统研讨会
- 批准号:
0910580 - 财政年份:2009
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
CMG Collaborative Research: A New Modeling Framework for Nonhydrostatic Simulations of Small-Scale Oceanic Processes
CMG 协作研究:小规模海洋过程非静水力模拟的新建模框架
- 批准号:
0620539 - 财政年份:2006
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences--"Stochastic Partial Differential Equations and Their Applications"
NSF/CBMS 数学科学区域会议--“随机偏微分方程及其应用”
- 批准号:
0225738 - 财政年份:2003
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
Collaborative Research: Three-Dimensional Numerical Investigation of Density Currents
合作研究:密度流的三维数值研究
- 批准号:
0209326 - 财政年份:2002
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
Deterministic and Stochastic Dynamics of Some Geophysical Systems
一些地球物理系统的确定性和随机动力学
- 批准号:
0139073 - 财政年份:2001
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
Deterministic and Stochastic Dynamics of Some Geophysical Systems
一些地球物理系统的确定性和随机动力学
- 批准号:
9973204 - 财政年份:1999
- 资助金额:
$ 21.69万 - 项目类别:
Continuing Grant
Dynamical Systems Methods for Nonlocal, Nonautonomous and Nondissipative Systems
非局部、非自治和非耗散系统的动力系统方法
- 批准号:
9704345 - 财政年份:1997
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
相似海外基金
CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
- 批准号:
1460319 - 财政年份:2014
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
Collaborative Research: CMG--Analysis and Modeling of Rotating Stratified Flows
合作研究:CMG--旋转层流分析与建模
- 批准号:
1025166 - 财政年份:2010
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
- 批准号:
1025417 - 财政年份:2010
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Quantum Monte Carlo Calculations of Deep Earth Materials
CMG 合作研究:地球深部材料的量子蒙特卡罗计算
- 批准号:
1024936 - 财政年份:2010
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
CMG Collaborative Research: Non-assimilation Fusion of Data and Models
CMG协同研究:数据与模型的非同化融合
- 批准号:
1025453 - 财政年份:2010
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
CMG Collaborative Research: Probabilistic Stratigraphic Alignment and Dating of Paleoclimate Data
CMG 合作研究:概率地层排列和古气候数据测年
- 批准号:
1025438 - 财政年份:2010
- 资助金额:
$ 21.69万 - 项目类别:
Continuing Grant
CMG COLLABORATIVE RESEARCH: Novel Mathematical Strategies for Superparameterization in Atmospheric and Oceanic Flows
CMG 合作研究:大气和海洋流超参数化的新数学策略
- 批准号:
1025468 - 财政年份:2010
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
CMG Collaborative Research: Simulation of Wave-Current Interaction Using Novel, Coupled Non-Phase and Phase Resolving Wave and Current Models
CMG 合作研究:使用新型耦合非相位和相位解析波流模型模拟波流相互作用
- 批准号:
1025527 - 财政年份:2010
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
Collaborative Research: CMG--Analysis and Modeling of Rotating Stratified Flows
合作研究:CMG--旋转层流分析与建模
- 批准号:
1025188 - 财政年份:2010
- 资助金额:
$ 21.69万 - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Nonlinear elastic-wave inverse scattering and tomography- from cracks to mantle convection
CMG 合作研究:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流
- 批准号:
1025302 - 财政年份:2010
- 资助金额:
$ 21.69万 - 项目类别:
Continuing Grant