Novel Relaxations for Global Optimization
全局优化的新颖松弛
基本信息
- 批准号:1030168
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Software implementing general-purpose deterministic global optimization algorithms for nonconvex nonlinear programs (NLPs) and mixed-integer nonlinear programs (MINLPs) became available for the first time over the past two decades. By building upon results from convex analysis, combinatorial optimization, and convex programming, these algorithms and software have already had a transformative impact in operations research, computer science, engineering design, and computational biology. Yet, there exist vast classes of important applications that these tools are unable to address at the moment. The primary goal of this project is to address the problem that lies at the heart of global optimization algorithms, i.e., the construction of sharp relaxations. Current algorithms iteratively decompose nonconvex functions, through the introduction of variables and constraints for intermediate functional expressions, until the intermediate expressions can be outer-approximated by a convex feasible set. While it is easy to automate, this factorable programming technique often leads to weak relaxations. This project pursues and systematically applies an innovative technique for relaxation construction that generates convex and concave envelopes of nonconvex functions while minimizing, or even entirely eliminating, the steps of this factorable decomposition. The technique relies on ideas from convex analysis with a careful exploitation of properties to derive closed-form solutions for convex optimization problems that characterize convex and concave envelopes of nonconvex functions. The project will develop analytical expressions for the envelopes of a variety of functions that appear in diverse application areas. The project will also investigate the computational implications of using these envelopes in branch-and-cut algorithms for NLPs and MINLPs.If successful, the results of this research will lay the foundations of a new generation of algorithms and software for global optimization capable of solving large-scale nonconvex NLPs and MINLPs that are ubiquitous in engineering design, manufacturing, logistics, and the chemical and biological sciences.
实现非凸非线性规划(nlp)和混合整数非线性规划(minlp)的通用确定性全局优化算法的软件在过去二十年中首次出现。通过构建凸分析、组合优化和凸规划的结果,这些算法和软件已经在运筹学、计算机科学、工程设计和计算生物学中产生了变革性的影响。然而,目前有大量重要的应用程序是这些工具无法解决的。这个项目的主要目标是解决全局优化算法的核心问题,即尖锐松弛的构造。目前的算法迭代分解非凸函数,通过引入中间函数表达式的变量和约束,直到中间表达式可以被凸可行集外逼近。虽然易于自动化,但这种可分解编程技术经常导致弱松弛。该项目追求并系统地应用了一种创新的松弛构造技术,该技术可以生成非凸函数的凸和凹包络,同时最小化甚至完全消除这种因子分解的步骤。该技术依赖于凸分析的思想,并仔细利用性质来推导非凸函数的凸包络和凹包络特征的凸优化问题的闭形式解。该项目将为出现在不同应用领域的各种功能的围护结构开发解析表达式。该项目还将研究在nlp和minlp的分支-切割算法中使用这些包络的计算含义。如果成功,这项研究的结果将为新一代算法和软件的全局优化奠定基础,这些算法和软件能够解决在工程设计、制造、物流、化学和生物科学中无处不在的大规模非凸nlp和minlp。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikolaos Sahinidis其他文献
Nikolaos Sahinidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikolaos Sahinidis', 18)}}的其他基金
Process Optimization Without an Algebraic Model
无需代数模型的流程优化
- 批准号:
1033661 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Development and Implementation of Algorithms for Stochastic Integer Programming
随机整数规划算法的开发和实现
- 批准号:
0115166 - 财政年份:2001
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
2001 TSE: NSF/EPA Partnership for Environmental Research: A Theoretical and Experimental Approach to Rapid Screening and Design of Secondary Refrigerants (TSE01-C)
2001 TSE:NSF/EPA 环境研究伙伴关系:快速筛选和设计辅助制冷剂的理论和实验方法 (TSE01-C)
- 批准号:
0124751 - 财政年份:2001
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Globally Optimal Neural Computing: Algorithms and Applications
合作研究:全局最优神经计算:算法与应用
- 批准号:
0098770 - 财政年份:2001
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
LT: Design of Environmentally Benign Refrigerants
LT:环保制冷剂的设计
- 批准号:
9873586 - 财政年份:1998
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Bridging The Gap Between Heuristic and Exact Approaches in Process Systems Engineering via Analytical Investigations
通过分析研究弥合过程系统工程中启发式方法和精确方法之间的差距
- 批准号:
9704643 - 财政年份:1997
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Faculty Early Career Development: Optimization Tools for Planning and Scheduling in the Process Industry
教师早期职业发展:流程工业中规划和调度的优化工具
- 批准号:
9502722 - 财政年份:1995
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Development of a Global Optimization Methodology to Support Engineering Design and Manufacturing
开发支持工程设计和制造的全局优化方法
- 批准号:
9414615 - 财政年份:1995
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似海外基金
GRASP Conic relaxations: scalable and accurate global optimization beyond polynomials
掌握圆锥松弛:超越多项式的可扩展且准确的全局优化
- 批准号:
EP/X032051/1 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Research Grant
AF: Small: Towards New Relaxations for Online Algorithms
AF:小:在线算法的新放松
- 批准号:
2224718 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Thresholds for the existence of efficient algorithms that solve NP- Complete problems under property testing relaxations
解决属性测试松弛下的 NP 完全问题的有效算法的存在阈值
- 批准号:
558705-2021 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Postgraduate Scholarships - Doctoral
Understanding Johari-Goldstein beta relaxations via glasses composed of dimer particles
通过二聚体粒子组成的玻璃了解 Johari-Goldstein β 弛豫
- 批准号:
21J10021 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Thresholds for the existence of efficient algorithms that solve NP- Complete problems under property testing relaxations
解决属性测试松弛下的 NP 完全问题的有效算法的存在阈值
- 批准号:
558705-2021 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Postgraduate Scholarships - Doctoral
Nouvelles relaxations lagrangiennes pour les problèmes de localisation avec capacité
新的放松拉格朗吉尼斯解决本地化问题和能力
- 批准号:
562221-2021 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Anomalous Thermal Relaxations of Physical Systems
职业:物理系统的异常热弛豫
- 批准号:
1944539 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Effective Algorithms for Structured Nonconvex Optimization Based on First- and Second-Order Methods and Convex Relaxations
基于一阶、二阶方法和凸松弛的结构化非凸优化的有效算法
- 批准号:
2445089 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Studentship
Discrete Optimization: From Applications to Relaxations
离散优化:从应用到松弛
- 批准号:
RGPIN-2015-06746 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Approximate Scheduling Algorithms via Mathematical Relaxations
职业:通过数学松弛的近似调度算法
- 批准号:
1844890 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant