Collaborative Research: A Constrained Optimal Control Approach to Nonparametric Estimation with Applications to Biological, Biomedical and Engineering Systems
协作研究:非参数估计的约束最优控制方法及其在生物、生物医学和工程系统中的应用
基本信息
- 批准号:1030804
- 负责人:
- 金额:$ 14.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this award is to develop a control theoretic framework and efficient numerical schemes for nonparametric estimation of shape and dynamics constrained functions, with applications to emerging fields such as systems biology. The project will focus on three important and interrelated components: (i) smoothing spline estimation of functions subject to constraints; (ii) computation and analysis of penalized polynomial spline estimators for constrained functions; and (iii) applications to genetic regulatory networks, degradation analysis in reliability engineering, and joint-drug treatment in biomedical research. The underlying theoretical foundation is based on constrained optimal control, complementarity theory, and asymptotic statistics. The obtained estimation algorithms will be implemented on various biological, biomedical and engineering systems subject to constraints.Constraints are pervasive in engineering and science. Efficient estimation methods to be developed in this research will yield better understanding of complex biological systems, and provide accurate predication of products' lifetime and joint-drug effects on patients. The proposed research goes beyond traditional areas of control technology with many novel applications in statistics, systems biology, reliability engineering, and biomedical practice. The research findings of this project will be disseminated through PIs' close collaboration with engineers and an epidemiologist. This project also intends to integrate research with education and outreach activities at University of Maryland Baltimore County and Purdue University. Examples include developing new curricula and recruiting students to gain hands-on research experience. Undergraduate summer research and K-12 training will be supported with particular focus on minority and women participants.
该奖项的研究目标是开发一个控制理论框架和有效的数值方案,用于形状和动力学约束函数的非参数估计,并应用于系统生物学等新兴领域。该项目将侧重于三个重要和相互关联的组成部分:㈠受约束函数的平滑样条估计; ㈡受约束函数的惩罚多项式样条估计的计算和分析; ㈢在遗传调控网络、可靠性工程中的退化分析和生物医学研究中的联合药物治疗方面的应用。基本的理论基础是基于约束最优控制,互补理论和渐近统计。所得到的估计算法将在各种生物、生物医学和工程系统上实现,这些系统都受到约束。本研究中开发的有效估计方法将更好地理解复杂的生物系统,并提供准确的产品寿命和联合药物对患者的影响预测。拟议的研究超越了传统的控制技术领域,在统计学,系统生物学,可靠性工程和生物医学实践中有许多新的应用。项目的研究结果将透过专业督察与工程师及一名流行病学家的紧密合作而公布。该项目还打算将研究与马里兰州巴尔的摩县大学和普渡大学的教育和推广活动结合起来。例如,开发新的课程和招收学生以获得实践研究经验。本科夏季研究和K-12培训将得到支持,特别关注少数民族和妇女参与者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinglai Shen其他文献
Generalized Input-to-State ℓ2-Gains of Discrete-Time Switched Linear Control Systems
离散时间切换线性控制系统的广义输入到状态 ℓ2 增益
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jianghai Hu;Jinglai Shen;V. Putta - 通讯作者:
V. Putta
Classical asymptotics in statistics
统计学中的经典渐近论
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Xiao Wang;Jinglai Shen - 通讯作者:
Jinglai Shen
Minimax Lower Bound and Optimal Estimation of Convex Functions in the Sup-Norm
超范数中凸函数的极小极大下界和最优估计
- DOI:
10.1109/tac.2016.2612543 - 发表时间:
2017 - 期刊:
- 影响因子:6.8
- 作者:
Teresa M. Lebair;Jinglai Shen;Xiao Wang - 通讯作者:
Xiao Wang
Stabilization of Switched Linear Systems Using Continuous Control Input against Known Adversarial Switching
使用针对已知对抗性切换的连续控制输入来稳定切换线性系统
- DOI:
10.1109/icca.2018.8444320 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jianghai Hu;Jinglai Shen;Donghwan Lee - 通讯作者:
Donghwan Lee
A generating function approach to the stability of discrete-time switched linear systems
离散时间切换线性系统稳定性的生成函数方法
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Jianghai Hu;Jinglai Shen;Wei Zhang - 通讯作者:
Wei Zhang
Jinglai Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinglai Shen', 18)}}的其他基金
Collaborative Research: Smart Vehicle Platooning Built upon Real-Time Learning and Distributed Optimization
协作研究:基于实时学习和分布式优化的智能车辆编队
- 批准号:
1902006 - 财政年份:2019
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Estimation of Nonlinear Components and Disturbances in Dynamical Systems with Applications to Threat Detection
ATD:协作研究:动态系统中非线性分量和扰动的估计及其在威胁检测中的应用
- 批准号:
1042916 - 财政年份:2010
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant
Switching Dynamics and Control of Complementarity Systems: a Hybrid System Perspective
互补系统的切换动力学和控制:混合系统的视角
- 批准号:
0900960 - 财政年份:2009
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347992 - 财政年份:2024
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347991 - 财政年份:2024
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
- 批准号:
2345528 - 财政年份:2023
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: A community platform for accelerating observationally-constrained regional oceanographic modeling
合作研究:框架:加速观测受限区域海洋学建模的社区平台
- 批准号:
2311383 - 财政年份:2023
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229345 - 财政年份:2023
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: A community platform for accelerating observationally-constrained regional oceanographic modeling
合作研究:框架:加速观测受限区域海洋学建模的社区平台
- 批准号:
2311382 - 财政年份:2023
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229344 - 财政年份:2023
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant
Collaborative Research: Mantle Dynamics and Plate Tectonics Constrained by Converted and Reflected Seismic Wave Imaging Beneath Hotspots
合作研究:热点下方转换和反射地震波成像约束的地幔动力学和板块构造
- 批准号:
2147918 - 财政年份:2022
- 资助金额:
$ 14.8万 - 项目类别:
Continuing Grant
Collaborative Research: Mantle dynamics and plate tectonics constrained by converted and reflected seismic wave imaging beneath hotspots
合作研究:热点下方转换和反射地震波成像约束的地幔动力学和板块构造
- 批准号:
2147923 - 财政年份:2022
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Closing the Theory-Practice Gap in Understanding and Combating Epidemic Spreading on Resource-Constrained Large-Scale Networks
合作研究:CNS核心:小型:缩小理解和抗击资源有限的大规模网络上的流行病传播的理论与实践差距
- 批准号:
2209922 - 财政年份:2021
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant