Research: Predicting STEM Career Choice from Computational Indicators of Student Engagement within Middle School Mathematics Classes
研究:根据中学数学课程中学生参与度的计算指标预测 STEM 职业选择
基本信息
- 批准号:1031398
- 负责人:
- 金额:$ 71.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This study by Worcester Polytechnic Institute will ascertain how well "disengagement" of students in mathematics can be determined from math learning software and how well it predicts later outcomes of STEM learning and career advancement. The study will use with metrics automatically extracted from a computer-based math learning tool in middle school to predict STEM workforce participation after high school. This research study will track a randomly selected sample of 1000 students who graduate from high school in 2010-2012 into college using surveys, online surveys, and on-line communities. By integrating these data with the information on when they were in middle school and were using the ASSISTment system the project can create an 8 year long longitudinal research project. They will follow the career choices of both students who go to college, and students who seek jobs instead of immediately attending college. The project will use educational data mining methods to categorize student behavior through analysis of log files recorded while students were using educational software. The investigators expect to measure disengagement and thus how student's motivation, goals, and self-efficacy towards STEM content are realized in practice with self-reports of student attitudes toward STEM careers and motivation to study science and mathematics. The researchers intend to determine whether students who had high levels of disengagement while in school, as shown by their use of computers in classes, is correlated with later life career choices, work behavior and success. This study will result in published articles in psychological journals that are expected to add a significant step in the knowledge of how student engagement during formal school years is associated with motivations and behavior to study science and enter careers that are demanding of thought and understanding of science.
伍斯特理工学院的这项研究将确定学生在数学学习软件中的“脱离”程度,以及它如何预测STEM学习和职业发展的后期结果。该研究将使用从中学基于计算机的数学学习工具中自动提取的指标来预测高中毕业后的STEM劳动力参与率。 这项研究将跟踪随机选择的1000名学生谁从高中毕业,在2010-2012年进入大学使用调查,在线调查和在线社区的样本。通过将这些数据与他们在中学时使用ASSISTment系统的信息相结合,该项目可以创建一个长达8年的纵向研究项目。 他们将跟踪上大学的学生和找工作而不是立即上大学的学生的职业选择。该项目将使用教育数据挖掘方法,通过分析学生使用教育软件时记录的日志文件来对学生行为进行分类。 研究人员希望通过学生对STEM职业的态度和学习科学和数学的动机的自我报告来衡量脱离接触,从而了解学生对STEM内容的动机,目标和自我效能在实践中如何实现。 研究人员打算确定那些在学校里高度脱离接触的学生,如他们在课堂上使用计算机所示,是否与以后的职业选择,工作行为和成功相关。这项研究将导致在心理学期刊上发表的文章,预计将增加一个重要的一步,了解学生在正式上学期间的参与如何与学习科学的动机和行为相关,并进入需要思考和理解科学的职业生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Heffernan其他文献
Using Criterion as a self-study writing tool
使用Criterion作为自学写作工具
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Neil Heffernan;Junko Otoshi,Yoshitaka Kaneko;矢野謙一;Junko Otoshi;植田晃次;大年順子;矢野謙一;Junko Otoshi - 通讯作者:
Junko Otoshi
PDCAサイクルから3ポジショニングシステムへ―学習者の自己成長と言語学習の自律化に向けた大学英語教員の正統的役割―
从PDCA循环到三定位体系 - 大学英语教师对学习者自我成长和语言学习自主性的合法作用 -
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Akira Nakayama;Neil Heffernan;Hiroyuki Matsumoto;Tomohito Hiromori;伊東治己;金岡 正夫 - 通讯作者:
金岡 正夫
シンポジウム:新学習指導要領が目指すもの,目指すべきもの
座谈会:新课程纲要的目标是什么以及应该达到的目标
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Hiroyuki Matsumoto;Neil Heffernan;ISHIKAWA Yuka;金岡正夫;伊東治己 - 通讯作者:
伊東治己
The Influence of Goal Orientation, Past Language studies
目标导向、过去语言研究的影响
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Akira Nakayama;Neil Heffernan;Hiroyuki Matsumoto;Tomohito Hiromori - 通讯作者:
Tomohito Hiromori
初年次英語教育カリキュラムの実働化にむけて-科研成果報告書をもとに
迈向一年级英语教育课程的实际实施——基于科研成果报告
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Hiroyuki Matsumoto;Neil Heffernan;ISHIKAWA Yuka;金岡正夫 - 通讯作者:
金岡正夫
Neil Heffernan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Heffernan', 18)}}的其他基金
Using ASSISTments for College Math: An Evaluation of the Effectiveness of Supports and Transferability of Findings
将 ASSISTments 用于大学数学:支持有效性和结果可转移性的评估
- 批准号:
2215842 - 财政年份:2023
- 资助金额:
$ 71.16万 - 项目类别:
Standard Grant
Support for U.S. Doctoral Students to Participate in the Annual Artificial Intelligence in Education (AIED) and co-located Educational Data Mining (EDM) Conferences
支持美国博士生参加年度教育人工智能 (AIED) 和同期举办的教育数据挖掘 (EDM) 会议
- 批准号:
2225091 - 财政年份:2022
- 资助金额:
$ 71.16万 - 项目类别:
Standard Grant
Collaborative Research: Common Error Diagnostics and Support in Short-answer Math Questions
合作研究:简答数学问题中的常见错误诊断和支持
- 批准号:
2118725 - 财政年份:2021
- 资助金额:
$ 71.16万 - 项目类别:
Standard Grant
REU Site: Leveraging The Learning Sciences & Technologies to Enhance Education and Learning in Secondary Schools
REU 网站:利用学习科学
- 批准号:
1950683 - 财政年份:2020
- 资助金额:
$ 71.16万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Cyber Infrastructure for Shared Algorithmic and Experimental Research in Online Learning
协作研究:框架:在线学习中共享算法和实验研究的网络基础设施
- 批准号:
1931523 - 财政年份:2019
- 资助金额:
$ 71.16万 - 项目类别:
Standard Grant
Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
- 批准号:
1940236 - 财政年份:2019
- 资助金额:
$ 71.16万 - 项目类别:
Standard Grant
Collaborative Research: Student Affect detection and Intervention with Teachers in the Loop
合作研究:学生情绪检测和与教师的干预
- 批准号:
1917808 - 财政年份:2019
- 资助金额:
$ 71.16万 - 项目类别:
Standard Grant
Putting Teachers in the Driver's Seat: Using Machine Learning to Personalize Interactions with Students (DRIVER-SEAT)
让教师掌握主动权:利用机器学习实现与学生的个性化互动 (DRIVER-SEAT)
- 批准号:
1822830 - 财政年份:2018
- 资助金额:
$ 71.16万 - 项目类别:
Standard Grant
Personalizing Mathematics to Maximize Relevance and Skill for Tomorrow's STEM Workforce
个性化数学,最大限度地提高未来 STEM 劳动力的相关性和技能
- 批准号:
1759229 - 财政年份:2018
- 资助金额:
$ 71.16万 - 项目类别:
Standard Grant
Support for Doctoral Students from U.S. Universities to Attend the 11th International Conference on Educational Data Mining (EDM 2018)
支持美国高校博士生参加第十一届教育数据挖掘国际会议(EDM 2018)
- 批准号:
1840771 - 财政年份:2018
- 资助金额:
$ 71.16万 - 项目类别:
Standard Grant
相似海外基金
Predicting skeletal regeneration: A computational approach to the activity of stem cells
预测骨骼再生:干细胞活性的计算方法
- 批准号:
495551 - 财政年份:2023
- 资助金额:
$ 71.16万 - 项目类别:
Miscellaneous Programs
Aligning Measurement of Personal Attributes for Predicting STEM Education Outcomes
调整个人属性测量以预测 STEM 教育成果
- 批准号:
2201888 - 财政年份:2022
- 资助金额:
$ 71.16万 - 项目类别:
Continuing Grant
Predicting and Preventing Acute Respiratory Distress Syndrome after Hematopoietic Stem Cell Transplantation
预测和预防造血干细胞移植后急性呼吸窘迫综合征
- 批准号:
10210479 - 财政年份:2021
- 资助金额:
$ 71.16万 - 项目类别:
Predicting STEM educational achievement and career pathways from spatial ability and non-cognitive factors
从空间能力和非认知因素预测 STEM 教育成就和职业道路
- 批准号:
2613396 - 财政年份:2021
- 资助金额:
$ 71.16万 - 项目类别:
Studentship
Predicting and Preventing Acute Respiratory Distress Syndrome after Hematopoietic Stem Cell Transplantation
预测和预防造血干细胞移植后急性呼吸窘迫综合征
- 批准号:
10685406 - 财政年份:2021
- 资助金额:
$ 71.16万 - 项目类别:
Predicting and Preventing Acute Respiratory Distress Syndrome after Hematopoietic Stem Cell Transplantation
预测和预防造血干细胞移植后急性呼吸窘迫综合征
- 批准号:
10475591 - 财政年份:2021
- 资助金额:
$ 71.16万 - 项目类别:
Predicting and understanding transcription factor activity from stem cell differentiation to beta-cell
预测和理解从干细胞分化为β细胞的转录因子活性
- 批准号:
553455-2020 - 财政年份:2020
- 资助金额:
$ 71.16万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
New method for predicting the effect of drug therapy by quantifying breast cancer stem cells and regulatory T cells
通过量化乳腺癌干细胞和调节性T细胞来预测药物治疗效果的新方法
- 批准号:
19K18055 - 财政年份:2019
- 资助金额:
$ 71.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Longitudinal Study Predicting Postsecondary STEM Readiness Among Low-Income Minority Students
一项预测低收入少数族裔学生中学后 STEM 准备情况的纵向研究
- 批准号:
1760225 - 财政年份:2018
- 资助金额:
$ 71.16万 - 项目类别:
Standard Grant
The investigation of imaging biomarkers predicting hepatic stem cell feature and epithelial-mesenchymal transition feature in hepatocellular carcinoma
预测肝细胞癌肝干细胞特征及上皮间质转化特征的影像学生物标志物研究
- 批准号:
15K19780 - 财政年份:2015
- 资助金额:
$ 71.16万 - 项目类别:
Grant-in-Aid for Young Scientists (B)