Collaborative Research: A Nanostructured Model of the Apoptotic Cell Surface

合作研究:凋亡细胞表面的纳米结构模型

基本信息

项目摘要

AbstractCollaborative Research: A Nanostructured Model of the Apoptotic Cell SurfaceSensors that mimic cellular membranes have contributed to understanding of protein-membrane interactions. However, the membranes of an apoptotic cells differ in lipid composition and structure, containing oxidized lipids that cause nanoscale and microscale protrusions. Membrane shape is a potential site for protein recognition and a critical way in which the body identifies damaged cells for removal. By mimicking the shapes of apoptotic membranes, sensors will be created that more accurately reflect apoptotic cells. Nanostructured membranes will be created using supported bilayer techniques. These nanostructured models of the apoptotic cell surface will allow for separate control of both membrane curvature and lipid composition. Binding of protein to these sensors will be monitored using a surface sensitive, fluorescence microscopy technique. Sensors designed using this approach will be useful for understanding how proteins interact with curved membrane surfaces. The first goal of this research is to construct supported bilayer membranes that allow for control of lipid composition as well as nanoscale surface structure. Silica nanoparticles embedded with fluorophores will be prepared and coated with a series of oxidized and non-oxidized lipids. These nanoparticles will be attached to glass surfaces and a lipid bilayer will be formed over them. The second goal of this research is to demonstrate the ability of these nanostructured membrane sensors to measure protein binding to curved surfaces. The effects of curvature on the binding of proteins involved with recognizing apoptotic cells for removal will be measured using total internal reflection fluorescence microscopy. Binding of C-reactive protein to the membranes will be visualized and quantitatively measured to determine what features of an apoptotic membrane are critical for protein recognition. This information will guide the future design of sensors that detect how the body responds to apoptotic cells.Intellectual Merits: It is unknown whether lipids, membrane curvature, or the combination determines protein binding to apoptotic cells. This work will answer that question and improve understanding of apoptotic cell recognition. In turn, this will allow for the design of sensors that recognize physiological responses to apoptotic cells that could be critical in diagnosing cardiovascular disease. The approaches developed here for engineering mimics of apoptotic cell membranes will become the foundation for sensors based on optical, electronic, or mass based signal transduction.Broader impacts: The proposed research will impact teaching, training, and outreach. A postdoctoral scientist and several students will be trained in emerging techniques at the interface of nanoscience, biology, chemistry, and spectroscopy. Additionally, the educational impact of this project will extend beyond the two campuses and will reach out to involve underrepresented minorities. Students from the Strides Toward Encouraging Professions in Science program at the Community College of Aurora, Community College of Denver and Metropolitan State College of Denver will be involved in the proposed research. A second method of outreach will be to include middle school science teachers through the Rocky Mountain-Middle School Math and Science Partnership.
AbstractCollaborative Research:细胞凋亡表面的纳米结构模型模拟细胞膜的传感器有助于理解蛋白质-膜相互作用。 然而,凋亡细胞的膜在脂质组成和结构上不同,含有导致纳米级和微米级突起的氧化脂质。 膜的形状是蛋白质识别的一个潜在位点,也是身体识别受损细胞并将其清除的一种关键方式。 通过模仿凋亡膜的形状,将创建更准确地反映凋亡细胞的传感器。 纳米结构膜将使用支持双层技术创建。这些凋亡细胞表面的纳米结构模型将允许分别控制膜曲率和脂质组成。将使用表面敏感荧光显微镜技术监测蛋白质与这些传感器的结合。使用这种方法设计的传感器将有助于了解蛋白质如何与弯曲的膜表面相互作用。本研究的第一个目标是构建支持的双层膜,允许控制脂质组成以及纳米级表面结构。 将制备嵌入有荧光团的二氧化硅纳米颗粒,并用一系列氧化和非氧化脂质包覆。这些纳米颗粒将附着在玻璃表面,并在其上形成脂质双层。 这项研究的第二个目标是证明这些纳米结构膜传感器测量蛋白质结合曲面的能力。 曲率对涉及识别凋亡细胞以去除的蛋白质的结合的影响将使用全内反射荧光显微镜来测量。 C反应蛋白与膜的结合将被可视化并定量测量,以确定凋亡膜的哪些特征对于蛋白质识别至关重要。 这些信息将指导未来设计的传感器,检测身体如何响应凋亡cells.Intellectual优点:这是未知的脂质,膜曲率,或组合决定蛋白质结合到凋亡细胞。 这项工作将回答这个问题,并提高对凋亡细胞识别的理解。 反过来,这将允许设计传感器,识别对凋亡细胞的生理反应,这可能是诊断心血管疾病的关键。 在这里开发的方法工程模拟凋亡细胞膜将成为传感器的基础上基于光学,电子,或质量为基础的信号transduction.Broader影响:拟议的研究将影响教学,培训和推广。一名博士后科学家和几名学生将在纳米科学,生物学,化学和光谱学的界面上接受新兴技术的培训。 此外,该项目的教育影响将超越两个校区,并将惠及代表性不足的少数族裔。 奥罗拉社区学院、丹佛社区学院和丹佛大都会州立学院的学生将参与这项拟议的研究。 第二种推广方法是通过落基山中学数学和科学伙伴关系将中学科学教师包括在内。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott Reed其他文献

AUTOTRACKER: Real-Time Pipeline and Cable Tracking Technologies for AUVs
  • DOI:
    10.1016/s1474-6670(17)36688-0
  • 发表时间:
    2003-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jonathan Evans;Yvan Petillot;Paul Redmond;Scott Reed;David Lane
  • 通讯作者:
    David Lane
Examining the effect of prenatal testosterone and aggression on sporting choice and sporting longevity
  • DOI:
    10.1016/j.paid.2017.04.022
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Scott Reed;Jennifer Meggs
  • 通讯作者:
    Jennifer Meggs
Differing Perceptions of Advanced Driver Assistance Systems (ADAS)
对高级驾驶辅助系统 (ADAS) 的不同看法

Scott Reed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott Reed', 18)}}的其他基金

MRI: Acquisition of High-Sensitivity, Solids Capable 400 MHz NMR for Research and Undergraduate Training at the University of Colorado at Denver
MRI:获取高灵敏度、固体能力 400 MHz NMR,用于丹佛科罗拉多大学的研究和本科生培训
  • 批准号:
    1726947
  • 财政年份:
    2017
  • 资助金额:
    $ 21.06万
  • 项目类别:
    Standard Grant
Collaborative: Spider fluorescence as a potential visual signal
合作:蜘蛛荧光作为潜在的视觉信号
  • 批准号:
    0920768
  • 财政年份:
    2009
  • 资助金额:
    $ 21.06万
  • 项目类别:
    Standard Grant
An Intelligent Event Monitor for Decisionmakers
面向决策者的智能事件监视器
  • 批准号:
    8313841
  • 财政年份:
    1984
  • 资助金额:
    $ 21.06万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 21.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
  • 批准号:
    2337507
  • 财政年份:
    2024
  • 资助金额:
    $ 21.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Polar-Polyolefin Block Copolymers via MILRad Functionalization: A Platform for Amphiphilic Nanostructured Material Synthesis
合作研究:通过 MILRad 功能化制备极性聚烯烃嵌段共聚物:两亲性纳米结构材料合成平台
  • 批准号:
    2108576
  • 财政年份:
    2021
  • 资助金额:
    $ 21.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering Gradient Nanostructured Metals by Multi-Pass Plastic Wave Deformation
合作研究:通过多通道塑性波变形工程梯度纳米结构金属
  • 批准号:
    2102030
  • 财政年份:
    2021
  • 资助金额:
    $ 21.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering Gradient Nanostructured Metals by Multi-Pass Plastic Wave Deformation
合作研究:通过多通道塑性波变形工程梯度纳米结构金属
  • 批准号:
    2102015
  • 财政年份:
    2021
  • 资助金额:
    $ 21.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering Gradient Nanostructured Metals by Multi-Pass Plastic Wave Deformation
合作研究:通过多通道塑性波变形工程梯度纳米结构金属
  • 批准号:
    2102093
  • 财政年份:
    2021
  • 资助金额:
    $ 21.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Polar-Polyolefin Block Copolymers via MILRad Functionalization: A Platform for Amphiphilic Nanostructured Material Synthesis
合作研究:通过 MILRad 功能化制备极性聚烯烃嵌段共聚物:两亲性纳米结构材料合成平台
  • 批准号:
    2108901
  • 财政年份:
    2021
  • 资助金额:
    $ 21.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving contact fatigue and wear properties using graded nanostructured surfaces in metallic materials
合作研究:使用金属材料中的分级纳米结构表面改善接触疲劳和磨损性能
  • 批准号:
    2004556
  • 财政年份:
    2020
  • 资助金额:
    $ 21.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving contact fatigue and wear properties using graded nanostructured surfaces in metallic materials
合作研究:使用金属材料中的分级纳米结构表面改善接触疲劳和磨损性能
  • 批准号:
    2004944
  • 财政年份:
    2020
  • 资助金额:
    $ 21.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: Concurrent Design of Quasi-Random Nanostructured Material Systems (NMS) and Nanofabrication Processes using Spectral Density Function
合作研究:使用谱密度函数并行设计准随机纳米结构材料系统(NMS)和纳米制造工艺
  • 批准号:
    1662509
  • 财政年份:
    2017
  • 资助金额:
    $ 21.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了