Collaborative Research: Abiotic Attenuation of Chlorinated Hydrocarbons in the Vapor Intrusion Pathway: Overlooked Nanoscale Chemistry on Soil Mineral Surfaces

合作研究:蒸汽入侵途径中氯化烃的非生物衰减:土壤矿物表面被忽视的纳米化学

基本信息

  • 批准号:
    1033502
  • 负责人:
  • 金额:
    $ 11.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-10-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

AbstractPI: Chongzheng NaProposal Number: CBET-1033848Institution: University of Notre DamePI: Yusong LiProposal Number: CBET-1033502Institution: University of Nebraska-LincolnTitle: Collaborative Research: Abiotic Attenuation of Chlorinated Hydrocarbons in the Vapor Intrusion Pathway: Overlooked Nanoscale Chemistry on Soil Mineral SurfacesChlorinated hydrocarbons are prevalent contaminants in soils and sediments due to improper disposal and accidental spillage. An important pathway for human exposure of these contaminants is the intrusion of their vapors into occupied buildings through the unsaturated vadose zone. Understanding the physical, chemical, and biological regulators of the vapor intrusion (VI) pathway is crucial to assess the health risks associated with chlorinated hydrocarbon contaminants (CHCs) at tens of thousands of pollution sites across the U.S. The overarching goal of the proposed research is to investigate an important, yet overlooked, chemical regulator of the chlorinated hydrocarbon vapor intrusion pathway, namely the nanoscale, heterogeneous reactions between vapor compounds and soil mineral surfaces. The proposed research takes an integrated approach combining experimental and modeling efforts. State-of-the-art analytical and surface-sensitive techniques, including gas chromatography mass spectrometry (GC/MS), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS), will be used to identify reaction products, quantify reaction kinetics, and elucidate reaction mechanisms. A multicomponent, multi-phase simulator, Michigan Soil Environment Remediation (MISER), will be modified to incorporate the new nanoscale chemistry into the assessment of vapor intrusion. In support of the goal of this project, three research objectives will be used to guide the formulation of hypotheses and the design and selection of experiments: (a) The first objective is to determine the prevalence of nanoscale surface reactions using representative chlorinated hydrocarbon compounds and soil minerals (including aged minerals). (b) The second objective is to investigate the effects of environmental parameters such as humidity and temperature on the reaction mechanisms, kinetics, and product stability. (c) The third objective is to mathematically evaluate the significance of vapor-mineral reactions as a chemical regulator of the vapor intrusion pathway.The proposed project has five tasks. First, eleven representative CHC compounds, three classes of soil minerals, and reconstructed calcite will be screened for their potentials to react with one another in the vapor intrusion pathway. The CHC compounds are selected based on their prevalence at various contamination sites as well as structural diversity. The soil minerals are five carbonates, quartz, and two feldspars. Calcite reconstructed under high humid conditions is used to evaluate the reactivity of aged minerals. Second, the kinetics of CHC-mineral reactions will be quantified by monitoring both gas-phase and surface products in an AFM fluid cell. The fluid cell serves as a continuously stirred tank reactor. The evolution of the reactions will be quantified by GC/MS (for CHC vapor and gas-phase products) and AFM (for surface nanostructure growth). Third, the changes of reaction products and kinetics under varying humidity will be determined using the AFM fluid cell. The condensation of water monolayers from humid air can have complicated consequences for CHC-mineral reactions, including generating reactive hydroxyl groups, creating reactive mobile ions, and blocking reactive surface sites. The variation of humidity is a typical environmental condition that happens between seasons. Forth, the release of volatile compounds from CHC-induced nanostructures will be evaluated using batch reactors at elevated temperatures. Temperature change is another seasonal variation. The increase of temperature that occurs during the transition from a cold season to a warm one may destabilize the CHC-induced nanostructures and release toxic volatile compounds unexpectedly. Last, a numerical model will be developed to simulate the vapor intrusion pathway with the abiotic attenuation. The evaluation will be performed usingsite specific information acquired from the Indiana Department of Environmental Management. The main intellectual merit of the proposed research is to provide a knowledge base for more sophisticated and accurate modeling of chlorinated hydrocarbon vapor intrusion. The research team also plans to make broader impacts in the proposed project by (1) training students from underrepresented groups on environmental nanogeochemistry research, (2) incorporating new knowledge obtained from the research frontier to the undergraduate-level courses for environmental science and engineering, and (3) providing local high-school students with research opportunities through outreach activities.
摘要PI:崇正纳提案编号:CBET-1033848机构:圣母大学PI:Yusong Li提案编号:CBET-1033502机构:内布拉斯加大学林肯分校标题:合作研究:氯代烃在蒸汽侵入途径中的非生物衰减:被忽视的土壤矿物表面纳米化学氯代烃是土壤和沉积物中普遍存在的污染物,由于处置不当和意外溢出。 人类暴露于这些污染物的一个重要途径是其蒸气通过非饱和包气带侵入已占用的建筑物。 了解蒸汽侵入(VI)途径的物理,化学和生物调节剂对于评估美国数万个污染地点与氯代烃污染物(CHC)相关的健康风险至关重要拟议研究的总体目标是调查氯代烃蒸汽侵入途径的重要但被忽视的化学调节剂,即纳米级,蒸汽化合物和土壤矿物表面之间的非均相反应。 拟议的研究采取了综合的方法,结合实验和建模工作。 国家的最先进的分析和表面敏感技术,包括气相色谱质谱(GC/MS),原子力显微镜(AFM),和X射线光电子能谱(XPS),将被用来确定反应产物,量化反应动力学,并阐明反应机制。 一个多组分,多相模拟器,密歇根州土壤环境修复(MISER),将被修改,以将新的纳米化学到蒸汽入侵的评估。 为支持该项目的目标,将采用三个研究目标来指导假设的制定以及实验的设计和选择:(a)第一个目标是利用代表性氯化碳氢化合物和土壤矿物(包括老化矿物)确定纳米级表面反应的普遍性。 (b)第二个目标是研究环境参数如湿度和温度对反应机理、动力学和产物稳定性的影响。 (c)第三个目标是从数学上评估蒸气-矿物反应作为蒸气侵入途径的化学调节剂的重要性。 首先,11个代表CHC化合物,三类土壤矿物,和重建方解石将被筛选的潜力,在蒸汽入侵途径中相互反应。 CHC化合物的选择是基于其在不同污染地点的普遍性以及结构多样性。 土壤矿物为五种碳酸盐、石英和两种长石。 用高湿条件下的方解石重构来评价老矿物的反应活性。 第二,CHC矿物反应的动力学将通过在AFM流体单元中监测气相和表面产物来量化。 流体池用作连续搅拌罐反应器。 将通过GC/MS(用于CHC蒸气和气相产物)和AFM(用于表面纳米结构生长)来量化反应的演变。第三,在不同湿度下的反应产物和动力学的变化将被确定使用AFM流体池。 来自潮湿空气的水单分子层的冷凝可对CHC-矿物反应具有复杂的后果,包括产生反应性羟基、产生反应性移动的离子和阻断反应性表面位点。 湿度的变化是季节之间发生的典型环境条件。 第四,使用间歇式反应器在升高的温度下评估从CHC诱导的纳米结构释放挥发性化合物。 温度变化是另一个季节性变化。 在从寒冷季节到温暖季节的过渡期间发生的温度升高可能会使CHC诱导的纳米结构不稳定并意外地释放有毒挥发性化合物。 最后,将发展一个数值模式来模拟非生物衰减的蒸气入侵路径。将使用从印第安纳州环境管理部获得的现场特定信息进行评价。 所提出的研究的主要智力价值是提供一个知识基础,更复杂和准确的建模氯化烃蒸气入侵。研究团队还计划通过以下方式在拟议项目中产生更广泛的影响:(1)培训来自环境纳米地球化学研究代表性不足的群体的学生,(2)将研究前沿获得的新知识纳入环境科学与工程的本科课程,以及(3)通过外展活动为当地高中生提供研究机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yusong Li其他文献

A pedestrian evacuation model for a ship's flat multi-exit large space under fire environment
  • DOI:
    10.1016/j.oceaneng.2024.118570
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Miao Chen;Mingyang Guo;Duanfeng Han;Lihao Yuan;Yusong Li;Kungang Wu
  • 通讯作者:
    Kungang Wu
Roughness-driven compressive sensing AFM for accurate nanoscale surface characterization in functional material systems
用于功能材料系统中精确纳米级表面表征的粗糙度驱动压缩传感原子力显微镜
  • DOI:
    10.1016/j.matdes.2025.114351
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Yusong Li;Jialin Shi;Gongxin Li;Shenghang Zhai;Xiao Li;Boyu Wu;Chanmin Su;Lianqing Liu
  • 通讯作者:
    Lianqing Liu
Experimental and numerical validation of the total trapping number for prediction of DNAPL mobilization.
用于预测 DNAPL 动员的总捕获数的实验和数值验证。
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Yusong Li;L. Abriola;T. Phelan;C. Ramsburg;K. Pennell;K. Pennell
  • 通讯作者:
    K. Pennell
Application of machine learning in groundwater quality modeling - A comprehensive review
机器学习在地下水质量建模中的应用 - 综合综述
  • DOI:
    10.1016/j.watres.2023.119745
  • 发表时间:
    2023-04-15
  • 期刊:
  • 影响因子:
    12.400
  • 作者:
    Ryan Haggerty;Jianxin Sun;Hongfeng Yu;Yusong Li
  • 通讯作者:
    Yusong Li
Precipitation, temperature, and landcovers drive spatiotemporal variability of groundwater nitrate concentration across the Continental United States
降水、温度和土地覆盖驱动美国大陆地下水硝酸盐浓度的时空变化
  • DOI:
    10.1016/j.scitotenv.2024.174040
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Chuyang Liu;Shannon Bartelt-Hunt;Yusong Li
  • 通讯作者:
    Yusong Li

Yusong Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yusong Li', 18)}}的其他基金

Collaborative Research: Real-time Investigations of Anisotropic Nanoparticle Aggregation and Consequences for Deposition in Porous Media
合作研究:各向异性纳米颗粒聚集及其在多孔介质中沉积的后果的实时研究
  • 批准号:
    1836799
  • 财政年份:
    2019
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant
SusChem: Collaborative Research: Role of Biofilms in Engineered Infiltration Systems in the Removal of Bacteria in Urban Stormwater
SusChem:合作研究:生物膜在工程渗透系统中去除城市雨水细菌中的作用
  • 批准号:
    1511941
  • 财政年份:
    2015
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Retention of Anisotropic Colloids in Porous Media: A Modeling and Experimental Investigation at Multiple Scales
合作研究:多孔介质中各向异性胶体的保留:多尺度的建模和实验研究
  • 批准号:
    1521428
  • 财政年份:
    2015
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Multiscale Framework to Investigate the Influence of Attached Phase Soil Organic Matter on the Fate, Transport, and Removal of Carbon-based Nanomaterials
合作研究:研究附着相土壤有机质对碳基纳米材料的归宿、传输和去除影响的多尺度框架
  • 批准号:
    1133528
  • 财政年份:
    2012
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding bioerosion from individuals to ecosystems: the impacts of biotic and abiotic stressors on sponge erosion of oyster reefs.
合作研究:了解从个体到生态系统的生物侵蚀:生物和非生物应激源对牡蛎礁海绵侵蚀的影响。
  • 批准号:
    2404991
  • 财政年份:
    2023
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms driving positive and negative tree-fungal feedbacks across an abiotic-stress gradient
合作研究:在非生物胁迫梯度上驱动正负树真菌反馈的机制
  • 批准号:
    2310100
  • 财政年份:
    2023
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanisms driving positive and negative tree-fungal feedbacks across an abiotic-stress gradient
合作研究:在非生物胁迫梯度上驱动正负树真菌反馈的机制
  • 批准号:
    2310101
  • 财政年份:
    2023
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Continuing Grant
RUI: Collaborative Research: Understanding bioerosion from individuals to ecosystems: the impacts of biotic and abiotic stressors on sponge erosion of oyster reefs.
RUI:合作研究:了解从个体到生态系统的生物侵蚀:生物和非生物应激源对牡蛎礁海绵侵蚀的影响。
  • 批准号:
    2045346
  • 财政年份:
    2021
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant
Collaborative Research: BEE: Impacts of abiotic environment, pathogen resistance and Pre-Columbian human management on Neotropical canopy palm abundances
合作研究:BEE:非生物环境、病原体抗性和前哥伦布时期人类管理对新热带树冠棕榈丰度的影响
  • 批准号:
    2039850
  • 财政年份:
    2021
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant
Collaborative Research: BEE: Impacts of abiotic environment, pathogen resistance and Pre-Columbian human management on Neotropical canopy palm abundances
合作研究:BEE:非生物环境、病原体抗性和前哥伦布时期人类管理对新热带树冠棕榈丰度的影响
  • 批准号:
    2039842
  • 财政年份:
    2021
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding bioerosion from individuals to ecosystems: the impacts of biotic and abiotic stressors on sponge erosion of oyster reefs.
合作研究:了解从个体到生态系统的生物侵蚀:生物和非生物应激源对牡蛎礁海绵侵蚀的影响。
  • 批准号:
    2048449
  • 财政年份:
    2021
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SitS: Development of multiple-scale sensor and remote sensing technology to quantify abiotic carbon dioxide emission in irrigated soils of aridlands
合作研究:SitS:开发多尺度传感器和遥感技术来量化干旱地区灌溉土壤中的非生物二氧化碳排放
  • 批准号:
    2034340
  • 财政年份:
    2021
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Living biotic-abiotic materials with temporally programmable actuation
合作研究:DMREF:具有临时可编程驱动的生物-非生物活性材料
  • 批准号:
    2118403
  • 财政年份:
    2021
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Living biotic-abiotic materials with temporally programmable actuation
合作研究:DMREF:具有临时可编程驱动的生物-非生物活性材料
  • 批准号:
    2118449
  • 财政年份:
    2021
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了