SOLAR: Development Methods to Predict Phase Separation and Charge Transport in Bulk Heterojunction Conjugated Polymer Solar Cells

太阳能:预测本体异质结共轭聚合物太阳能电池中相分离和电荷传输的开发方法

基本信息

  • 批准号:
    1035480
  • 负责人:
  • 金额:
    $ 135万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:One of the most important scientific challenges is how to efficiently harvest, convert, store and utilize solar energy. In recent years, there has been a growing interest of developing organic materials for solar cell applications. Organic solar cells offer a low-cost, large-area, flexible, light-weight, clean, and quiet alternative energy source for both indoor and outdoor applications. However, their power conversion efficiencies and operational lifetimes must be improved to enable large-scale commercialization and implementation and deep societal impact. Thus, there is an urgent need to understand fundamental processes in these devices. Currently, the synthesis and optimization of new materials is time consuming and labor intensive, and relies on trial and error approaches with poor success rates. There is therefore a great need to rationally anticipate materials performance from their chemical composition and bulk morphology to accelerate technology development and depart from empirical optimization. The goal of this interdisciplinary program is to mesh complementary expertise in chemistry, materials, physics, and mathematics, to make breakthroughs in the science and technology of organic solar cells. The team will address: 1) the development of new methods to simulate phase separation in BHJ solar cells; 2) the development of first-principles methods to predict carrier mobilities in organic semiconductors; 3) the nanoscale characterization of donor-acceptor interpenetrating networks; 4) the understanding of charge generation and transport process; 5) the synthesis of new conjugated polymers guided by the theoretical predictions; 6) evaluation of materials performance. The simulation methods will be validated extensively on well-studied materials and will then be capitalized for the design of more efficient new materials. As well-orchestrated theoretical and experimental efforts, the project strives to achieve transformative breakthroughs for the development of high-efficiency and low-cost organic solar cells.NON-TECHNICAL SUMMARY: The world demand for energy is expected to double by 2050. As of now, there is no viable technology to address this challenge without emission of carbon dioxide to the environment. In view of this, increasing the power conversion efficiency and operational lifetime of plastic solar cells is provides the opportunity to create a clean and potentially economically viable energy source with a wide range of applications. The goal of the proposed research is to assemble the team of scientists with complementary expertise in chemistry, materials, physics, and mathematics, to establish theoretical guidelines for a rational development of materials and solar cell device structures. Successful completion of the program is expected to relieve the current need to optimize device performance via trial and error procedures and will pave the way for an acceleration of technical innovation. This project integrates interdisciplinary research and education by involving the participation of undergraduate and graduate students and postdoctoral researchers, with special emphasis in the recruitment of underrepresented students. New courses on organic semiconductors and their applications in energy conversion will be offered at UCSB. The courses will be taught in an interdisciplinary environment, with which the investigators hope to address the urgent need to train researchers in the area of renewable energies. Furthermore, Workshops and demonstrations on solar energy for K-12 students, teachers, and parents in local schools will be developed to create awareness about renewable and sustainable energy sources. In addition, by exposing students to these ideas at such an early stage, the investigators hope to awaken in them the desire to pursue a career in sciences.
最重要的科学挑战之一是如何有效地收集、转换、储存和利用太阳能。近年来,人们对开发用于太阳能电池应用的有机材料越来越感兴趣。有机太阳能电池为室内和室外应用提供了低成本、大面积、灵活、重量轻、清洁和安静的替代能源。然而,它们的功率转换效率和运行寿命必须得到改善,以实现大规模商业化和实施以及深刻的社会影响。因此,迫切需要了解这些设备中的基本过程。目前,新材料的合成和优化是耗时和劳动密集型的,并且依赖于成功率低的试错方法。因此,非常需要从材料的化学组成和体积形态合理地预测材料性能,以加速技术发展并脱离经验优化。这个跨学科计划的目标是将化学,材料,物理和数学方面的互补专业知识结合起来,在有机太阳能电池的科学和技术方面取得突破。该小组将处理:1)模拟BHJ太阳能电池中相分离的新方法的发展; 2)预测有机半导体中载流子迁移率的第一性原理方法的发展; 3)给体-受体互穿网络的纳米级表征; 4)电荷产生和传输过程的理解; 5)在理论预测指导下合成新的共轭聚合物; 6)材料性能评价。模拟方法将在经过充分研究的材料上得到广泛验证,然后将用于设计更有效的新材料。该项目通过精心设计的理论和实验,致力于实现高效、低成本有机太阳能电池开发的变革性突破。非技术概要:预计到2050年,世界能源需求将翻一番。到目前为止,还没有可行的技术来应对这一挑战,而不会向环境排放二氧化碳。 鉴于此,增加塑料太阳能电池的功率转换效率和操作寿命提供了创造具有广泛应用的清洁且潜在经济上可行的能源的机会。拟议研究的目标是聚集具有化学,材料,物理和数学互补专业知识的科学家团队,为材料和太阳能电池器件结构的合理开发建立理论指导方针。该项目的成功完成有望缓解目前通过试错程序优化设备性能的需求,并为加速技术创新铺平道路。该项目通过本科生、研究生和博士后研究人员的参与,将跨学科研究和教育结合起来,特别强调招收代表性不足的学生。UCSB将提供有机半导体及其在能量转换中的应用的新课程。这些课程将在跨学科的环境中教授,研究人员希望借此解决培训可再生能源领域研究人员的迫切需要。此外,还将为当地学校的K-12学生、教师和家长举办太阳能讲习班和示范,以提高对可再生和可持续能源的认识。此外,通过让学生在如此早期的阶段接触这些想法,研究人员希望唤醒他们追求科学事业的愿望。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thuc-Quyen Nguyen其他文献

Harvesting the Full Potential of Photons with Organic Solar Cells
  • DOI:
    10.1002/adma.201504417
  • 发表时间:
    2016-02-17
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Ran, Niva A.;Love, John A.;Thuc-Quyen Nguyen
  • 通讯作者:
    Thuc-Quyen Nguyen
Toward Thermal Stable and High Photovoltaic Efficiency Ternary Conjugated Copolymers: Influence of Backbone Fluorination and Regioselectivity
走向热稳定和高光伏效率的三元共轭共聚物:主链氟化和区域选择性的影响
  • DOI:
    10.1021/acs.chemmater.6b05365
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Yuan Jianyu;Ford Michael J.;Zhang Yannan;Dong Huilong;Li Zhi;Li Youyong;Thuc-Quyen Nguyen;Bazan Guillermo C.;Ma Wanli
  • 通讯作者:
    Ma Wanli
Selective doping of a single ambipolar organic semiconductor to obtain P- and N-type semiconductors
选择性掺杂单一双极性有机半导体以获得P型和N型半导体
  • DOI:
    10.1016/j.matt.2022.05.037
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Yanqin Chen;Lingli Zhao;Ping-An Chen;Yuhao Li;Jing Guo;Yu Liu;Xincan Qiu;Jiangnan Xia;Kaixuan Chen;Huajie Chen;Xinhui Lu;Lang Jiang;Lei Liao;Thuc-Quyen Nguyen;Yuanyuan Hu
  • 通讯作者:
    Yuanyuan Hu
Systematic study of exciton diffusion length in organic semiconductors by six experimental methods
  • DOI:
    10.1039/c3mh00089c
  • 发表时间:
    2014-03-01
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Lin, Jason D. A.;Mikhnenko, Oleksandr V.;Thuc-Quyen Nguyen
  • 通讯作者:
    Thuc-Quyen Nguyen
Effect of leakage current and shunt resistance on the light intensity dependence of organic solar cells
  • DOI:
    10.1063/1.4913589
  • 发表时间:
    2015-02-23
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Proctor, Christopher M.;Thuc-Quyen Nguyen
  • 通讯作者:
    Thuc-Quyen Nguyen

Thuc-Quyen Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thuc-Quyen Nguyen', 18)}}的其他基金

Solution-Processed Organic Ratchets for Energy Harvesting
用于能量收集的溶液加工有机棘轮
  • 批准号:
    1411349
  • 财政年份:
    2014
  • 资助金额:
    $ 135万
  • 项目类别:
    Standard Grant
CAREER: Structure-Function-Property Relationships in Charged Conjugated Polymers
职业:带电共轭聚合物的结构-功能-性能关系
  • 批准号:
    0547639
  • 财政年份:
    2006
  • 资助金额:
    $ 135万
  • 项目类别:
    Continuing Grant
NER: High Efficiency Multiphoton Photoreactive Materials Based on Semiconductor Nanoparticles
NER:基于半导体纳米颗粒的高效多光子光反应材料
  • 批准号:
    0609485
  • 财政年份:
    2006
  • 资助金额:
    $ 135万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
  • 批准号:
    EP/Z532976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 135万
  • 项目类别:
    Research Grant
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
  • 批准号:
    2907463
  • 财政年份:
    2024
  • 资助金额:
    $ 135万
  • 项目类别:
    Studentship
MCA: Towards a Theory of Engineering Identity Development & Persistence of Minoritized Students with Imposter Feelings: A Longitudinal Mixed-methods Study of Developmental Networks
MCA:迈向工程身份发展理论
  • 批准号:
    2421846
  • 财政年份:
    2024
  • 资助金额:
    $ 135万
  • 项目类别:
    Standard Grant
CAREER: Robust and Lightweight Formal Methods for Mobile Robot System Development
职业:用于移动机器人系统开发的稳健且轻量级的形式化方法
  • 批准号:
    2338706
  • 财政年份:
    2024
  • 资助金额:
    $ 135万
  • 项目类别:
    Continuing Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 135万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 135万
  • 项目类别:
    EU-Funded
Development and application of 40Ar/39Ar dating methods for young volcanic rocks
年轻火山岩40Ar/39Ar测年方法的开发与应用
  • 批准号:
    24K17153
  • 财政年份:
    2024
  • 资助金额:
    $ 135万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the onset mechanism of dysphagia in basal ganglia disease and development of new treatment methods
阐明基底神经节疾病吞咽困难的发病机制并开发新的治疗方法
  • 批准号:
    23K09284
  • 财政年份:
    2023
  • 资助金额:
    $ 135万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research and development of behavioral and neurophysiological mechanisms of sensorimotor and emotional control methods using language
使用语言进行感觉运动和情绪控制方法的行为和神经生理学机制的研究和开发
  • 批准号:
    23H00624
  • 财政年份:
    2023
  • 资助金额:
    $ 135万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of remote lymphedema management methods
远程淋巴水肿管理方法的开发
  • 批准号:
    23H03186
  • 财政年份:
    2023
  • 资助金额:
    $ 135万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了