EAGER: Digging into Image Data to Answer Authorship Related Questions

EAGER:深入研究图像数据来回答与作者身份相关的问题

基本信息

  • 批准号:
    1039385
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

This project designs image analysis algorithms that extract salient image features, group images based on similarity of these features, classify groups according to a priori knowledge, and optimize algorithmic steps and parameters. The research team applies the algorithms jointly developed to the three collections of images; and reports accuracy and computational requirements over all of the image collections. The research activities address problems of individual and collective authorship via artistic, scientific and technological questions based on the datasets, and developing the corresponding image analyses leading to computationally scalable and accurate data-driven discoveries of salient and discriminating characteristics. More specifically, the project, (a) promotes the development and deployment of innovative image analyses targeting the problem of authorship and applied to large-scale data analysis; (b) fosters interdisciplinary collaboration among scholars in the humanities, computer sciences, and information sciences; (c) promotes international and domestic collaborations; and (d) leads to unique accuracy and computational scalability findings over a set of large, diverse digital collections made available over the grid to a significant body of researchers from complementary disciplines keen to learn from each other. The project is a part of international, multi-institutional and multi-disciplinary efforts that jointly explore authorship across three distinct but in some respects complementary digital dataset collections: 15th-century manuscripts, 17th- and 18th-century maps and 19th- and 20th-century quilts.
本项目设计图像分析算法,提取显著的图像特征,根据这些特征的相似性对图像进行分组,根据先验知识对组进行分类,并优化算法步骤和参数。研究小组将联合开发的算法应用于三个图像集;并报告了所有图像集的准确性和计算要求。研究活动通过基于数据集的艺术,科学和技术问题来解决个人和集体作者的问题,并开发相应的图像分析,从而导致计算可扩展和准确的数据驱动的显着和区别特征的发现。 更具体地说,该项目:(a)促进针对作者身份问题的创新图像分析的开发和部署,并将其应用于大规模数据分析;(B)促进人文科学、计算机科学和信息科学学者之间的跨学科合作;(c)促进国际和国内合作;(d)促进国际和国内合作。和(d)导致独特的准确性和计算的可扩展性的结果,在一组大的,不同的数字收集提供了在网格上的一个重要机构的研究人员从互补的学科热衷于相互学习。该项目是国际、多机构和多学科努力的一部分,这些努力共同探索三种不同但在某些方面互补的数字数据集收藏的作者身份:15世纪手稿、17和18世纪地图以及19和20世纪的被子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenton McHenry其他文献

Enabling real-time multi-messenger astrophysics discoveries with deep learning
利用深度学习实现实时多信使天体物理学发现
  • DOI:
    10.1038/s42254-019-0097-4
  • 发表时间:
    2019-10-03
  • 期刊:
  • 影响因子:
    39.500
  • 作者:
    E. A. Huerta;Gabrielle Allen;Igor Andreoni;Javier M. Antelis;Etienne Bachelet;G. Bruce Berriman;Federica B. Bianco;Rahul Biswas;Matias Carrasco Kind;Kyle Chard;Minsik Cho;Philip S. Cowperthwaite;Zachariah B. Etienne;Maya Fishbach;Francisco Forster;Daniel George;Tom Gibbs;Matthew Graham;William Gropp;Robert Gruendl;Anushri Gupta;Roland Haas;Sarah Habib;Elise Jennings;Margaret W. G. Johnson;Erik Katsavounidis;Daniel S. Katz;Asad Khan;Volodymyr Kindratenko;William T. C. Kramer;Xin Liu;Ashish Mahabal;Zsuzsa Marka;Kenton McHenry;J. M. Miller;Claudia Moreno;M. S. Neubauer;Steve Oberlin;Alexander R. Olivas;Donald Petravick;Adam Rebei;Shawn Rosofsky;Milton Ruiz;Aaron Saxton;Bernard F. Schutz;Alex Schwing;Ed Seidel;Stuart L. Shapiro;Hongyu Shen;Yue Shen;Leo P. Singer;Brigitta M. Sipocz;Lunan Sun;John Towns;Antonios Tsokaros;Wei Wei;Jack Wells;Timothy J. Williams;Jinjun Xiong;Zhizhen Zhao
  • 通讯作者:
    Zhizhen Zhao
Learning to Segment Images Into Material and Object Classes
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenton McHenry
  • 通讯作者:
    Kenton McHenry
Brown Dog: Making the Digital World a Better Place, a Few Files at a Time
Brown Dog:一次处理几个文件,让数字世界变得更美好
  • DOI:
    10.1145/3219104.3219132
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sandeep Puthanveetil Satheesan;Jay Alameda;Shannon Bradley;M. Dietze;B. Galewsky;Gregory Jansen;R. Kooper;Praveen Kumar;Jong Lee;R. Marciano;Luigi Marini;B. Minsker;Chris Navarro;A. Schmidt;M. Slavenas;W. Sullivan;Bing Zhang;Yan Zhao;Inna Zharnitsky;Kenton McHenry
  • 通讯作者:
    Kenton McHenry
Towards a Universal, Quantifiable, and Scalable File Format Converter
迈向通用、可量化和可扩展的文件格式转换器
4CeeD: Real-Time Data Acquisition and Analysis Framework for Material-Related Cyber-Physical Environments
4CeeD:材料相关网络物理环境的实时数据采集和分析框架

Kenton McHenry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenton McHenry', 18)}}的其他基金

Collaborative Research: Frameworks: DeCODER (Democratized Cyberinfrastructure for Open Discovery to Enable Research)
协作研究:框架:DeCODER(用于开放发现以支持研究的民主化网络基础设施)
  • 批准号:
    2209863
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
NNA Track 1: Collaborative Research: The Permafrost Discovery Gateway: Navigating the new Arctic tundra through Big Data, artificial intelligence, and cyberinfrastructure
NNA 轨道 1:协作研究:永久冻土发现网关:通过大数据、人工智能和网络基础设施导航新的北极苔原
  • 批准号:
    1927729
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: CSSI: Framework: Data: Clowder Open Source Customizable Research Data Management, Plus-Plus
协作研究:CSSI:框架:数据:Clowder 开源可定制研究数据管理,Plus-Plus
  • 批准号:
    1835834
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting
合作研究:ABI 开发:PEcAn 项目:生态预测社区平台
  • 批准号:
    1457890
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CIF21 DIBBs: Brown Dog
CIF21 DIBB:棕色狗
  • 批准号:
    1261582
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
    Cooperative Agreement
Collaborative Proposal: ABI Innovation: Model-data synthesis and forecasting across the upper Midwest: Partitioning uncertainty and environmental heterogeneity in ecosystem carbon
合作提案:ABI 创新:中西部上游地区的模型数据综合和预测:划分生态系统碳的不确定性和环境异质性
  • 批准号:
    1062547
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant

相似海外基金

Digging into the "Gadgil effect": how the competitive balance between fungal guilds affects carbon and nitrogen cycling
深入探讨“加吉尔效应”:真菌行会之间的竞争平衡如何影响碳氮循环
  • 批准号:
    NE/W005816/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Digging into Eocene hothouse climate variability: Elemental signals derived from X-ray fluorescence scanning of Messel sediment cores
深入研究始新世温室气候变化:来自梅塞尔沉积岩芯 X 射线荧光扫描的元素信号
  • 批准号:
    495243119
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grants
Digging into Soil Carbonate Formation Processes with Triple Oxygen Isotopes
用三重氧同位素深入研究土壤碳酸盐的形成过程
  • 批准号:
    2122023
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Digging into sand: New territories in the making
挖掘沙子:新领域正在形成
  • 批准号:
    MR/S032894/1
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Fellowship
Digging Deep Into Dioxane Biodegradation
深入研究二恶烷生物降解
  • 批准号:
    557120-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Banting Postdoctoral Fellowships Tri-council
Digging into Data Round Four Conference
深入数据第四轮会议
  • 批准号:
    1938348
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Digging deeper into effective field theory
深入挖掘有效场论
  • 批准号:
    18K13533
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Digging into High Frequency Financial Data: present and future risks and opportunities (ATLANTIS)
挖掘高频金融数据:当前和未来的风险和机遇(ATLANTIS)
  • 批准号:
    ES/R004021/1
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Mapping Manuscript Migrations: Digging into data for the history and provenance of pre-modern European manuscripts
绘制手稿迁徙图:深入研究前现代欧洲手稿的历史和出处数据
  • 批准号:
    ES/R003971/1
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Digging into High Frequency Data: Present and Future Risks and Opportunities
挖掘高频数据:当前和未来的风险和机遇
  • 批准号:
    329107530
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了