Collaborative Proposal: ABI Innovation: Model-data synthesis and forecasting across the upper Midwest: Partitioning uncertainty and environmental heterogeneity in ecosystem carbon
合作提案:ABI 创新:中西部上游地区的模型数据综合和预测:划分生态系统碳的不确定性和环境异质性
基本信息
- 批准号:1062547
- 负责人:
- 金额:$ 66.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The University of Illinois at Urbana-Champaign and the University of Wisconsin - Madison are awarded collaborative grants to develop an integrated ecological bioinformatics toolbox dubbed the Predictive Ecosystem Analyzer (PEcAn) which consists of: 1) a scientific workflow system to manage the immense amounts of publicly-available environmental data and 2) a Bayesian data assimilation system to synthesize this information within state-of-the-art ecosystems models. This project is motivated by the fact that many of the most pressing questions about global change are not necessarily limited by the need to collect new data as much as by our ability to synthesize existing data. This project seeks to improve this ability by developing a framework for integrating multiple data sources in a sensible manner. PEcAn is initially being developed around the Ecosystem Demography model (ED), one of the few terrestrial biosphere models capable of integrating a large suite of observational data at different spatial and temporal scales, but is designed to interface with a wide class of ecosystem models. The output of the data assimilation system will be a regional-scale high-resolution estimate of both the terrestrial carbon cycle and plant biodiversity based on the best available data and with a robust accounting of the uncertainties involved. The workflow system will allow ecosystem modeling to be more reproducible, automated, and transparent in terms of operations applied to data, and thus ultimately more comprehensible to both peers and the public. It will reduce the redundancy of effort among modeling groups, facilitate collaboration, and make models more accessible the rest of the research community. As a test bed for the development and application of these ecological bioinformatics tools, the project will focus on the temperate/boreal transition zone in northern Wisconsin, a region that is expected to show large climate change responses and is arguably the most data-rich region in the country. The tools developed here will enable us to partition carbon flux and pool variability in space and time and to attribute the regional-scale responses to specific biotic and abiotic drivers. The data-assimilation framework will partition different sources of uncertainty, which will enable a better understanding of which are limiting our inference, and provide a more complete propagation of uncertainty into model forecasts. ED will then be used to forecast regional-scale dynamics under decadal to centennial scale climate change scenarios. This approach will allow us to assess for the first time how much our uncertainty about the current state of the ecosystem impacts our ability to anticipate the future. The tools developed in this project will not only find broad use in the ecological community but will also have direct relevance to important policy and management debates about climate change mitigation and carbon credit markets. Specifically, it will allow a repeatable, scientifically defensible, and temporally up-to-date analysis of the state of the carbon cycle base on a broad synthesis of the best available data. Within the scientific community, these tools will be broadly applicable to numeous ecosystem models and facilitate the use and evaluation of predictive models by non-modelers. The tools developed here are also well-positioned to synthesize the large volumes of information coming out of a number of NSF-supported research networks, such as the LTER network and NEON. To encourage use and development, we will make open-source code, documentation, and tutorials available on the project website, pecanproject.org. To further disseminate these tools and methods, this project also has a strong education component consisting of three elements: 1) the development of a graduate seminar on eco-informatics that will be offered in both face-to-face and online formats, 2) the participation of the PIs in two existing summer courses, one of which is offered at a tribal college located within our study region, and 3) direct training of students and postdocs directly involved with the project.
伊利诺伊大学厄巴纳-香槟分校和威斯康星州-麦迪逊大学被授予合作赠款,以开发一个被称为预测生态系统分析仪(PEcAn)的综合生态生物信息学工具箱,该工具箱包括:1)管理大量公开环境数据的科学工作流程系统; 2)贝叶斯数据同化系统,在国家范围内综合这些信息。艺术生态系统模型这个项目的动机是,许多关于全球变化的最紧迫的问题不一定受到收集新数据的需要的限制,而是受到我们综合现有数据的能力的限制。该项目旨在通过开发一个以合理的方式集成多个数据源的框架来提高这种能力。PEcAn最初是围绕生态系统人口模型(艾德)开发的,这是少数几个能够在不同的空间和时间尺度上整合大量观测数据的陆地生物圈模型之一,但其设计目的是与广泛的生态系统模型相结合。数据同化系统的产出将是根据现有最佳数据对陆地碳循环和植物生物多样性作出的区域尺度高分辨率估计,并对所涉及的不确定性作出强有力的说明。 工作流系统将使生态系统建模在应用于数据的操作方面更具可复制性,自动化和透明性,从而最终更容易为同行和公众所理解。 它将减少建模组之间的冗余工作,促进协作,并使模型更容易被研究社区的其他成员访问。作为开发和应用这些生态生物信息学工具的试验台,该项目将侧重于北方威斯康星州的温带/北方过渡带,该地区预计将显示出对气候变化的巨大反应,可以说是该国数据最丰富的地区。这里开发的工具将使我们能够划分碳通量和池的空间和时间的变化,并归因于特定的生物和非生物驱动程序的区域规模的反应。数据同化框架将划分不同的不确定性来源,这将使我们能够更好地了解哪些因素限制了我们的推断,并将不确定性更完整地传播到模型预测中。艾德然后将用于预测十年至百年尺度气候变化情景下的区域尺度动态。 这种方法将使我们能够第一次评估我们对生态系统当前状态的不确定性对我们预测未来的能力有多大影响。本项目开发的工具不仅将在生态界得到广泛使用,而且还将直接关系到有关减缓气候变化和碳信用市场的重要政策和管理辩论。具体而言,它将允许在广泛综合现有最佳数据的基础上,对碳循环的状态进行可重复的、科学上可辩护的和时间上最新的分析。在科学界,这些工具将广泛适用于numeous生态系统模型,并促进非建模者使用和评估预测模型。这里开发的工具也很适合于综合大量来自一些国家科学基金会支持的研究网络的信息,如LTER网络和氖。为了鼓励使用和开发,我们将在项目网站pecanproject.org上提供开源代码、文档和教程。为了进一步传播这些工具和方法,该项目还包括一个强大的教育部分,包括三个要素:1)开发一个关于生态信息学的研究生研讨会,将以面对面和在线形式提供,2)PI参与两个现有的夏季课程,其中一个是在位于我们研究区域内的部落学院提供的,以及3)直接培训直接参与该项目的学生和博士后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenton McHenry其他文献
Enabling real-time multi-messenger astrophysics discoveries with deep learning
利用深度学习实现实时多信使天体物理学发现
- DOI:
10.1038/s42254-019-0097-4 - 发表时间:
2019-10-03 - 期刊:
- 影响因子:39.500
- 作者:
E. A. Huerta;Gabrielle Allen;Igor Andreoni;Javier M. Antelis;Etienne Bachelet;G. Bruce Berriman;Federica B. Bianco;Rahul Biswas;Matias Carrasco Kind;Kyle Chard;Minsik Cho;Philip S. Cowperthwaite;Zachariah B. Etienne;Maya Fishbach;Francisco Forster;Daniel George;Tom Gibbs;Matthew Graham;William Gropp;Robert Gruendl;Anushri Gupta;Roland Haas;Sarah Habib;Elise Jennings;Margaret W. G. Johnson;Erik Katsavounidis;Daniel S. Katz;Asad Khan;Volodymyr Kindratenko;William T. C. Kramer;Xin Liu;Ashish Mahabal;Zsuzsa Marka;Kenton McHenry;J. M. Miller;Claudia Moreno;M. S. Neubauer;Steve Oberlin;Alexander R. Olivas;Donald Petravick;Adam Rebei;Shawn Rosofsky;Milton Ruiz;Aaron Saxton;Bernard F. Schutz;Alex Schwing;Ed Seidel;Stuart L. Shapiro;Hongyu Shen;Yue Shen;Leo P. Singer;Brigitta M. Sipocz;Lunan Sun;John Towns;Antonios Tsokaros;Wei Wei;Jack Wells;Timothy J. Williams;Jinjun Xiong;Zhizhen Zhao - 通讯作者:
Zhizhen Zhao
Learning to Segment Images Into Material and Object Classes
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Kenton McHenry - 通讯作者:
Kenton McHenry
Brown Dog: Making the Digital World a Better Place, a Few Files at a Time
Brown Dog:一次处理几个文件,让数字世界变得更美好
- DOI:
10.1145/3219104.3219132 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Sandeep Puthanveetil Satheesan;Jay Alameda;Shannon Bradley;M. Dietze;B. Galewsky;Gregory Jansen;R. Kooper;Praveen Kumar;Jong Lee;R. Marciano;Luigi Marini;B. Minsker;Chris Navarro;A. Schmidt;M. Slavenas;W. Sullivan;Bing Zhang;Yan Zhao;Inna Zharnitsky;Kenton McHenry - 通讯作者:
Kenton McHenry
BRACELET: Hierarchical Edge-Cloud Microservice Infrastructure for Scientific Instruments’ Lifetime Connectivity
BRACELET:用于科学仪器终身连接的分层边缘云微服务基础设施
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Phuong Nguyen;Steven Konstanty;Tarek Elgamal;Todd Nicholson;Stuart Turner;Patrick Su;K. Nahrstedt;T. Spila;R. Campbell;J. Dallesasse;Michael Chan;Kenton McHenry - 通讯作者:
Kenton McHenry
Towards a Universal, Quantifiable, and Scalable File Format Converter
迈向通用、可量化和可扩展的文件格式转换器
- DOI:
10.1109/e-science.2009.28 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Kenton McHenry;R. Kooper;P. Bajcsy - 通讯作者:
P. Bajcsy
Kenton McHenry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenton McHenry', 18)}}的其他基金
Collaborative Research: Frameworks: DeCODER (Democratized Cyberinfrastructure for Open Discovery to Enable Research)
协作研究:框架:DeCODER(用于开放发现以支持研究的民主化网络基础设施)
- 批准号:
2209863 - 财政年份:2022
- 资助金额:
$ 66.67万 - 项目类别:
Continuing Grant
NNA Track 1: Collaborative Research: The Permafrost Discovery Gateway: Navigating the new Arctic tundra through Big Data, artificial intelligence, and cyberinfrastructure
NNA 轨道 1:协作研究:永久冻土发现网关:通过大数据、人工智能和网络基础设施导航新的北极苔原
- 批准号:
1927729 - 财政年份:2019
- 资助金额:
$ 66.67万 - 项目类别:
Standard Grant
Collaborative Research: CSSI: Framework: Data: Clowder Open Source Customizable Research Data Management, Plus-Plus
协作研究:CSSI:框架:数据:Clowder 开源可定制研究数据管理,Plus-Plus
- 批准号:
1835834 - 财政年份:2018
- 资助金额:
$ 66.67万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting
合作研究:ABI 开发:PEcAn 项目:生态预测社区平台
- 批准号:
1457890 - 财政年份:2015
- 资助金额:
$ 66.67万 - 项目类别:
Standard Grant
EAGER: Digging into Image Data to Answer Authorship Related Questions
EAGER:深入研究图像数据来回答与作者身份相关的问题
- 批准号:
1039385 - 财政年份:2010
- 资助金额:
$ 66.67万 - 项目类别:
Standard Grant
相似海外基金
RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
- 批准号:
2908868 - 财政年份:2024
- 资助金额:
$ 66.67万 - 项目类别:
Studentship
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
- 批准号:
24K17404 - 财政年份:2024
- 资助金额:
$ 66.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Supporting Mentoring in STEM Graduate Education: A Proposal for Virtual Workshops and Supporting Activities
会议:支持 STEM 研究生教育辅导:虚拟研讨会和支持活动的提案
- 批准号:
2413980 - 财政年份:2024
- 资助金额:
$ 66.67万 - 项目类别:
Standard Grant
Proposal Title : NemeSys - Smart Multiphasic Nanoreactors Based On Tailored Foams for Direct H2O2 Synthesis
提案标题:NemeSys - 基于定制泡沫的智能多相纳米反应器,用于直接合成 H2O2
- 批准号:
EP/Y034392/1 - 财政年份:2024
- 资助金额:
$ 66.67万 - 项目类别:
Research Grant
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
- 批准号:
2424057 - 财政年份:2024
- 资助金额:
$ 66.67万 - 项目类别:
Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 66.67万 - 项目类别:
Standard Grant
Travel: Texas Power and Energy Conference (TPEC) 2024 Travel Proposal
旅行:德克萨斯州电力与能源会议 (TPEC) 2024 年旅行提案
- 批准号:
2341300 - 财政年份:2024
- 资助金额:
$ 66.67万 - 项目类别:
Standard Grant
Business and Local Government Data Research Centre Legacy Status Proposal
企业和地方政府数据研究中心遗留状态提案
- 批准号:
ES/Y003411/1 - 财政年份:2024
- 资助金额:
$ 66.67万 - 项目类别:
Research Grant
Lite(House) - A Financially Flexible, Adaptive and Efficient Live/Work Housing Proposal
Lite(House) - 财务灵活、适应性强且高效的生活/工作住房提案
- 批准号:
10071140 - 财政年份:2023
- 资助金额:
$ 66.67万 - 项目类别:
Collaborative R&D
Proposal of effective utilization of polyphenols as functional food ingredients for realization of a healthy longevity society
有效利用多酚作为功能性食品成分以实现健康长寿社会的提案
- 批准号:
23K10889 - 财政年份:2023
- 资助金额:
$ 66.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)