Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting

合作研究:ABI 开发:PEcAn 项目:生态预测社区平台

基本信息

  • 批准号:
    1457890
  • 负责人:
  • 金额:
    $ 34.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Computer simulations play an essential role in ecological research, the management of national forests and other public and private land resources, and projections of climate change impacts on ecosystem services at the local, state, national, and international level. However, at the moment, there are a number of barriers slowing the pace of model improvement and reducing their wider use. First, the software for using each model is unique and does not communicate well with other models. Second, because each model is unique, the tools to manage data going into models, analyze models, and visualize results are not shared. In this project PEcAn (Predictive Ecosystem Analyzer) is being developed to provide a common set of software tools for researchers and land managers to effectively work with multiple ecosystem models and data. Web technologies will be used to allow distant modeling teams to share information, work together, and better use public and private cloud and supercomputing resources. Other tools will be developed to identify model errors and combine new and existing applications into workflows to make ecological research more efficient, better forecast ecosystem services, and support evidence-based decision making. The PEcAn team will also develop training tools for new users and work with the scientific community to add more models to PEcAn. PEcAn will make ecological research more transparent, repeatable, and accountable.PEcAn is an open-source ecoinformatics system designed for ecologists with a range of modeling backgrounds to be able to better and more easily parameterize, run, analyze, and assimilate data into ecosystem models at local and regional scales. This project will expand the PEcAn user community, incorporate more models, and develop tools that are more intuitive and accessible. Further, the project intends to transform tools for managing the flows of information into and out of ecosystem models into a resilient, scalable, and distributed peer-to-peer network for managing the flow of this information among modeling teams and with the broader community. To support a larger number of models, data processing workflows will be improved and tools will be developed for multi-model visualization and benchmarking. Applications that distribute analyses across the PEcAn network, cloud, and high-performance computing environments will be used to better understand model structural error using data mining approaches. Models will benchmarked over a range of environmental conditions, allowing model improvement to be tracked and users to select the best models for different applications in an informed manner. Finally, PEcAn tools will be combined into customizable workflows for real-time synthesis, forecasting, and decision support. By allowing modelers to focus on science rather than informatics, and allowing ecologists to easily compare their data to models, PEcAn will greatly accelerate the pace of model improvement and hypothesis testing. These activities are essential for improving ecosystem models and reducing uncertainty of the impacts of climate change on ecosystems and carbon cycle-climate feedbacks. Project information and results are available at http://pecanproject.org while project computer code is available at https://github.com/pecanproject.
计算机模拟在生态研究、国家森林和其他公共和私人土地资源的管理以及气候变化对地方、州、国家和国际层面生态系统服务的影响预测中发挥着重要作用。然而,目前存在一些障碍,减缓了模型改进的步伐,减少了模型的广泛使用。首先,每个模型使用的软件都是独一无二的,不能很好地与其他模型沟通。其次,因为每个模型都是唯一的,所以管理进入模型的数据、分析模型和可视化结果的工具是不共享的。在这个项目中,正在开发PEcAn(预测生态系统分析仪),为研究人员和土地管理者提供一套通用的软件工具,以有效地处理多种生态系统模型和数据。网络技术将允许远程建模团队共享信息,协同工作,更好地利用公共和私有云和超级计算资源。将开发其他工具来识别模型错误,并将新的和现有的应用程序结合到工作流程中,以提高生态研究的效率,更好地预测生态系统服务,并支持基于证据的决策。PEcAn团队还将为新用户开发培训工具,并与科学界合作,为PEcAn添加更多模型。PEcAn将使生态研究更加透明、可重复和负责任。PEcAn是一个开源的生态信息系统,为具有一系列建模背景的生态学家设计,能够更好,更容易地参数化,运行,分析和吸收数据到局部和区域尺度的生态系统模型中。该项目将扩展PEcAn用户社区,合并更多模型,并开发更直观、更易于访问的工具。此外,该项目打算将用于管理进出生态系统模型的信息流的工具转换为一个有弹性的、可伸缩的、分布式的点对点网络,用于管理建模团队之间以及与更广泛的社区之间的信息流。为了支持更多的模型,数据处理工作流将得到改进,并且将开发用于多模型可视化和基准测试的工具。跨PEcAn网络、云和高性能计算环境分发分析的应用程序将用于使用数据挖掘方法更好地理解模型结构错误。模型将在一系列环境条件下进行基准测试,从而可以跟踪模型的改进,并使用户以知情的方式为不同的应用选择最佳模型。最后,PEcAn工具将结合到可定制的工作流中,用于实时合成、预测和决策支持。通过允许建模者专注于科学而不是信息学,并允许生态学家轻松地将他们的数据与模型进行比较,PEcAn将大大加快模型改进和假设检验的步伐。这些活动对于改进生态系统模型和减少气候变化对生态系统和碳循环-气候反馈影响的不确定性至关重要。项目信息和结果可在http://pecanproject.org上获得,而项目计算机代码可在https://github.com/pecanproject上获得。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenton McHenry其他文献

Enabling real-time multi-messenger astrophysics discoveries with deep learning
利用深度学习实现实时多信使天体物理学发现
  • DOI:
    10.1038/s42254-019-0097-4
  • 发表时间:
    2019-10-03
  • 期刊:
  • 影响因子:
    39.500
  • 作者:
    E. A. Huerta;Gabrielle Allen;Igor Andreoni;Javier M. Antelis;Etienne Bachelet;G. Bruce Berriman;Federica B. Bianco;Rahul Biswas;Matias Carrasco Kind;Kyle Chard;Minsik Cho;Philip S. Cowperthwaite;Zachariah B. Etienne;Maya Fishbach;Francisco Forster;Daniel George;Tom Gibbs;Matthew Graham;William Gropp;Robert Gruendl;Anushri Gupta;Roland Haas;Sarah Habib;Elise Jennings;Margaret W. G. Johnson;Erik Katsavounidis;Daniel S. Katz;Asad Khan;Volodymyr Kindratenko;William T. C. Kramer;Xin Liu;Ashish Mahabal;Zsuzsa Marka;Kenton McHenry;J. M. Miller;Claudia Moreno;M. S. Neubauer;Steve Oberlin;Alexander R. Olivas;Donald Petravick;Adam Rebei;Shawn Rosofsky;Milton Ruiz;Aaron Saxton;Bernard F. Schutz;Alex Schwing;Ed Seidel;Stuart L. Shapiro;Hongyu Shen;Yue Shen;Leo P. Singer;Brigitta M. Sipocz;Lunan Sun;John Towns;Antonios Tsokaros;Wei Wei;Jack Wells;Timothy J. Williams;Jinjun Xiong;Zhizhen Zhao
  • 通讯作者:
    Zhizhen Zhao
Learning to Segment Images Into Material and Object Classes
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenton McHenry
  • 通讯作者:
    Kenton McHenry
Brown Dog: Making the Digital World a Better Place, a Few Files at a Time
Brown Dog:一次处理几个文件,让数字世界变得更美好
  • DOI:
    10.1145/3219104.3219132
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sandeep Puthanveetil Satheesan;Jay Alameda;Shannon Bradley;M. Dietze;B. Galewsky;Gregory Jansen;R. Kooper;Praveen Kumar;Jong Lee;R. Marciano;Luigi Marini;B. Minsker;Chris Navarro;A. Schmidt;M. Slavenas;W. Sullivan;Bing Zhang;Yan Zhao;Inna Zharnitsky;Kenton McHenry
  • 通讯作者:
    Kenton McHenry
BRACELET: Hierarchical Edge-Cloud Microservice Infrastructure for Scientific Instruments’ Lifetime Connectivity
BRACELET:用于科学仪器终身连接的分层边缘云微服务基础设施
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Phuong Nguyen;Steven Konstanty;Tarek Elgamal;Todd Nicholson;Stuart Turner;Patrick Su;K. Nahrstedt;T. Spila;R. Campbell;J. Dallesasse;Michael Chan;Kenton McHenry
  • 通讯作者:
    Kenton McHenry
Towards a Universal, Quantifiable, and Scalable File Format Converter
迈向通用、可量化和可扩展的文件格式转换器

Kenton McHenry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenton McHenry', 18)}}的其他基金

Collaborative Research: Frameworks: DeCODER (Democratized Cyberinfrastructure for Open Discovery to Enable Research)
协作研究:框架:DeCODER(用于开放发现以支持研究的民主化网络基础设施)
  • 批准号:
    2209863
  • 财政年份:
    2022
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Continuing Grant
NNA Track 1: Collaborative Research: The Permafrost Discovery Gateway: Navigating the new Arctic tundra through Big Data, artificial intelligence, and cyberinfrastructure
NNA 轨道 1:协作研究:永久冻土发现网关:通过大数据、人工智能和网络基础设施导航新的北极苔原
  • 批准号:
    1927729
  • 财政年份:
    2019
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Standard Grant
Collaborative Research: CSSI: Framework: Data: Clowder Open Source Customizable Research Data Management, Plus-Plus
协作研究:CSSI:框架:数据:Clowder 开源可定制研究数据管理,Plus-Plus
  • 批准号:
    1835834
  • 财政年份:
    2018
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Standard Grant
CIF21 DIBBs: Brown Dog
CIF21 DIBB:棕色狗
  • 批准号:
    1261582
  • 财政年份:
    2013
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Cooperative Agreement
Collaborative Proposal: ABI Innovation: Model-data synthesis and forecasting across the upper Midwest: Partitioning uncertainty and environmental heterogeneity in ecosystem carbon
合作提案:ABI 创新:中西部上游地区的模型数据综合和预测:划分生态系统碳的不确定性和环境异质性
  • 批准号:
    1062547
  • 财政年份:
    2011
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Continuing Grant
EAGER: Digging into Image Data to Answer Authorship Related Questions
EAGER:深入研究图像数据来回答与作者身份相关的问题
  • 批准号:
    1039385
  • 财政年份:
    2010
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Sustainable ABI: Arctos Sustainability
合作研究:可持续 ABI:Arctos 可持续性
  • 批准号:
    2034568
  • 财政年份:
    2021
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    2201182
  • 财政年份:
    2021
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
  • 批准号:
    2209978
  • 财政年份:
    2021
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
  • 批准号:
    2048296
  • 财政年份:
    2020
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
  • 批准号:
    2021734
  • 财政年份:
    2020
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
  • 批准号:
    2027203
  • 财政年份:
    2019
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Building a Pipeline for Validation, Curation and Archiving of Integrative/Hybrid Models
合作研究:ABI 开发:构建集成/混合模型的验证、管理和归档管道
  • 批准号:
    1756250
  • 财政年份:
    2018
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Development: The next stage in protein-protein docking
合作研究:ABI 开发:蛋白质-蛋白质对接的下一阶段
  • 批准号:
    1759472
  • 财政年份:
    2018
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model-based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
  • 批准号:
    1759729
  • 财政年份:
    2018
  • 资助金额:
    $ 34.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了