EAGER: Structure-Preserving Discretization of Elasticity Using Geometric Ideas

EAGER:使用几何思想实现弹性的结构保持离散化

基本信息

  • 批准号:
    1042559
  • 负责人:
  • 金额:
    $ 4.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2012-02-29
  • 项目状态:
    已结题

项目摘要

The objective of this EArly Grant for Exploratory Research (EAGER) award is to lay the foundations of a geometric theory of discrete elasticity. The project uses a novel self-consistent discretization of geometry and mechanics to systematically construct geometric structure-preserving numerical schemes. Instead of discretizing the continuum governing equations, the project starts "ab initio" with no reference to any continuum quantity; the configuration space will be directly discretized. As an example, in the case of incompressible nonlinear elasticity, instead of imposing incompressibility as an internal constraint, the space of volume-preserving diffeomorphisms will be discretized. The existing numerical methods use the constitutive equations after interpolation of discrete fields. In this project, the geometric structure of constitutive equations and their structure-preserving discretizations will be carefully investigated.The research activities will potentially lead to a geometric discrete elasticity theory that will unify all the existing numerical methods, and will make it possible to build new and more robust numerical schemes that mirror the corresponding continuum models in the form of their governing equations, conservation laws, and internal constraints. The social benefit of this approach will be in modifying/improving the existing analysis codes and making them more reliable. More reliable analysis tools will lead to better designs (avoiding catastrophic failures of structures) and, at the same time, will allow lighter and more efficient structures to be manufactured. On the educational side, the PI will engage graduate students in a multidisciplinary research at the interface between computational mechanics and differential geometry.
这个探索性研究早期资助(EAGER)奖的目的是为离散弹性的几何理论奠定基础。该项目使用一种新颖的自洽几何和力学离散化来系统地构建几何结构保持数值格式。该项目没有离散连续统控制方程,而是在不涉及任何连续统量的情况下“从头开始”;构型空间将被直接离散化。以不可压缩非线性弹性为例,将保容微分同态空间离散化,而不是将不可压缩性作为内部约束。现有的数值方法采用离散场插值后的本构方程。在这个项目中,本构方程的几何结构及其结构保持离散化将被仔细研究。研究活动将有可能导致一个几何离散弹性理论,它将统一所有现有的数值方法,并将使建立新的和更健壮的数值方案成为可能,这些方案以其控制方程、守恒定律和内部约束的形式反映相应的连续体模型。这种方法的社会效益将是修改/改进现有的分析代码,使它们更加可靠。更可靠的分析工具将带来更好的设计(避免结构的灾难性失效),同时,将允许制造更轻、更高效的结构。在教育方面,PI将吸引研究生参与计算力学和微分几何之间的多学科研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arash Yavari其他文献

Safety and Efficacy of Metabolic Modulation With Ninerafaxstat in Patients With Nonobstructive Hypertrophic Cardiomyopathy
尼内拉法司他对非梗阻性肥厚型心肌病患者进行代谢调节的安全性和有效性
  • DOI:
    10.1016/j.jacc.2024.03.387
  • 发表时间:
    2024-05-28
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Martin S. Maron;Masliza Mahmod;Azlan Helmy Abd Samat;Lubna Choudhury;Daniele Massera;Dermot M.J. Phelan;Sharon Cresci;Matthew W. Martinez;Ahmad Masri;Theodore P. Abraham;Eric Adler;Omar Wever-Pinzon;Sherif F. Nagueh;Gregory D. Lewis;Paul Chamberlin;Jai Patel;Arash Yavari;Hakim-Moulay Dehbi;Rizwan Sarwar;Betty Raman;Hugh Watkins
  • 通讯作者:
    Hugh Watkins
Universal Displacements in Anisotropic Linear Cauchy Elasticity
  • DOI:
    10.1007/s10659-024-10094-5
  • 发表时间:
    2024-11-06
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Arash Yavari;Dimitris Sfyris
  • 通讯作者:
    Dimitris Sfyris
Investigating the Influence of Crospovidone’s Manufacturer Variability on Dissolution Profiles of Hydrochlorothiazide Tablets
  • DOI:
    10.1208/s12249-025-03039-1
  • 发表时间:
    2025-02-04
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Arash Yavari;Seyed Kazem Sadjady;Elham Moniri;Ali Nokhodchi;Fatemeh Haghighat Talab
  • 通讯作者:
    Fatemeh Haghighat Talab
Analysis of the rate-dependent coupled thermo-mechanical response of shape memory alloy bars and wires in tension
  • DOI:
    10.1007/s00161-011-0187-8
  • 发表时间:
    2011-05-06
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Reza Mirzaeifar;Reginald DesRoches;Arash Yavari
  • 通讯作者:
    Arash Yavari
A NOVEL ASSESSMENT METHOD OF MULTIDIRECTIONAL 3D MYOCARDIAL FINITE STRAIN PATTERN FROM 3D ECHOCARDIOGRAPHIC DATA
基于三维超声心动图数据的多方向三维心肌有限应变模式的一种新颖评估方法
  • DOI:
    10.1016/s0735-1097(25)02565-3
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Satya Prakash Pradhan;Mohammad Hashemi;Arash Yavari;Gianni Pedrizzetti;Arash Kheradvar
  • 通讯作者:
    Arash Kheradvar

Arash Yavari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arash Yavari', 18)}}的其他基金

Nonlinear Thermomechanics of Accretion
吸积的非线性热力学
  • 批准号:
    1939901
  • 财政年份:
    2020
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
Nonlinear Mechanics of Defects in Solids
固体缺陷的非线性力学
  • 批准号:
    1561578
  • 财政年份:
    2016
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
Discrete Nonlinear Elasticity: Differential Complexes and Incompressibility
离散非线性弹性:微分复数和不可压缩性
  • 批准号:
    1162002
  • 财政年份:
    2012
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Growing Bodies: A Riemannian Geometric Approach
合作研究:生长体力学:黎曼几何方法
  • 批准号:
    1130856
  • 财政年份:
    2011
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Continuing Grant

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
  • 批准号:
    EP/Y033248/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Research Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
  • 批准号:
    23K17655
  • 财政年份:
    2023
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
  • 批准号:
    2309425
  • 财政年份:
    2023
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
  • 批准号:
    2309591
  • 财政年份:
    2023
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
CAREER: Structure-Preserving Multimodal Alignment between Vision and Language
职业:视觉和语言之间保持结构的多模态对齐
  • 批准号:
    2239840
  • 财政年份:
    2023
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2318032
  • 财政年份:
    2023
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309548
  • 财政年份:
    2023
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了