Collaborative Research: Mechanics of Growing Bodies: A Riemannian Geometric Approach

合作研究:生长体力学:黎曼几何方法

基本信息

  • 批准号:
    1130856
  • 负责人:
  • 金额:
    $ 23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

The research objective of this grant is to elucidate a differential/Riemannian geometric formulation for the mechanics of growing bodies. The proposed work is based on the concept of a changing material manifold whose dynamics predicts the evolution of the relaxed state of a material body. This theory is applicable to biological tissues in which growth and remodeling are coupled with large deformations. To achieve the research objective of this proposal, a theory of continuum mechanics based on a dynamic material manifold is introduced that couples the growth/remodeling of biological tissues with their large deformations. The proposed research will put growth and similar nonlinear problems into a unified geometric theory that has a dynamic material manifold. One of the goals of this project is to promote the use of geometric techniques in the mechanics community by demonstrating some of their advantages and applications. The results of this project will be presented in a language accessible to engineers, and they will demonstrate the conceptual clarifications and modeling advantages brought by the geometric approach. A major educational impact of this research is the establishment of a general framework for learning and teaching growth mechanics in biology using the language of mathematics and mechanics, a context, which is currently missing in the biophysics. This project will foster opportunities for collaborative research between the University of Maine and Georgia Institute of Technology and facilitate broadening the participation of undergraduate students in the cutting edge research in the field of biomechanics.
这笔赠款的研究目的是阐明生长物体的力学的微分/黎曼几何公式。所提出的工作是基于变化的物质流形的概念,其动力学预测物质物体的松弛状态的演变。这一理论适用于生长和重塑伴随着大变形的生物组织。为了实现这一建议的研究目标,引入了一种基于动态材料流形的连续介质力学理论,该理论将生物组织的生长/重塑与其大变形相耦合。这项拟议的研究将把增长和类似的非线性问题纳入具有动态物质流形的统一几何理论。这个项目的目标之一是通过展示几何技术的一些优点和应用来促进几何技术在力学领域的使用。该项目的结果将以工程师可理解的语言展示,并将展示几何方法带来的概念澄清和建模优势。这项研究的一个主要教育影响是建立了一个利用数学和力学的语言学习和教授生物学生长力学的一般框架,这是生物物理学目前所缺乏的一种背景。该项目将促进缅因州大学和佐治亚理工学院之间的合作研究机会,并促进本科生更广泛地参与生物力学领域的前沿研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arash Yavari其他文献

Safety and Efficacy of Metabolic Modulation With Ninerafaxstat in Patients With Nonobstructive Hypertrophic Cardiomyopathy
尼内拉法司他对非梗阻性肥厚型心肌病患者进行代谢调节的安全性和有效性
  • DOI:
    10.1016/j.jacc.2024.03.387
  • 发表时间:
    2024-05-28
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Martin S. Maron;Masliza Mahmod;Azlan Helmy Abd Samat;Lubna Choudhury;Daniele Massera;Dermot M.J. Phelan;Sharon Cresci;Matthew W. Martinez;Ahmad Masri;Theodore P. Abraham;Eric Adler;Omar Wever-Pinzon;Sherif F. Nagueh;Gregory D. Lewis;Paul Chamberlin;Jai Patel;Arash Yavari;Hakim-Moulay Dehbi;Rizwan Sarwar;Betty Raman;Hugh Watkins
  • 通讯作者:
    Hugh Watkins
Universal Displacements in Anisotropic Linear Cauchy Elasticity
  • DOI:
    10.1007/s10659-024-10094-5
  • 发表时间:
    2024-11-06
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Arash Yavari;Dimitris Sfyris
  • 通讯作者:
    Dimitris Sfyris
Investigating the Influence of Crospovidone’s Manufacturer Variability on Dissolution Profiles of Hydrochlorothiazide Tablets
  • DOI:
    10.1208/s12249-025-03039-1
  • 发表时间:
    2025-02-04
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Arash Yavari;Seyed Kazem Sadjady;Elham Moniri;Ali Nokhodchi;Fatemeh Haghighat Talab
  • 通讯作者:
    Fatemeh Haghighat Talab
Analysis of the rate-dependent coupled thermo-mechanical response of shape memory alloy bars and wires in tension
  • DOI:
    10.1007/s00161-011-0187-8
  • 发表时间:
    2011-05-06
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Reza Mirzaeifar;Reginald DesRoches;Arash Yavari
  • 通讯作者:
    Arash Yavari
A NOVEL ASSESSMENT METHOD OF MULTIDIRECTIONAL 3D MYOCARDIAL FINITE STRAIN PATTERN FROM 3D ECHOCARDIOGRAPHIC DATA
基于三维超声心动图数据的多方向三维心肌有限应变模式的一种新颖评估方法
  • DOI:
    10.1016/s0735-1097(25)02565-3
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Satya Prakash Pradhan;Mohammad Hashemi;Arash Yavari;Gianni Pedrizzetti;Arash Kheradvar
  • 通讯作者:
    Arash Kheradvar

Arash Yavari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arash Yavari', 18)}}的其他基金

Nonlinear Thermomechanics of Accretion
吸积的非线性热力学
  • 批准号:
    1939901
  • 财政年份:
    2020
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Nonlinear Mechanics of Defects in Solids
固体缺陷的非线性力学
  • 批准号:
    1561578
  • 财政年份:
    2016
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Discrete Nonlinear Elasticity: Differential Complexes and Incompressibility
离散非线性弹性:微分复数和不可压缩性
  • 批准号:
    1162002
  • 财政年份:
    2012
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
EAGER: Structure-Preserving Discretization of Elasticity Using Geometric Ideas
EAGER:使用几何思想实现弹性的结构保持离散化
  • 批准号:
    1042559
  • 财政年份:
    2010
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331295
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331296
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323414
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2313746
  • 财政年份:
    2023
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
EAGER/Collaborative Research: Switching Structures at the Intersection of Mechanics and Networks
EAGER/协作研究:力学和网络交叉点的切换结构
  • 批准号:
    2306824
  • 财政年份:
    2023
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了