Discrete Nonlinear Elasticity: Differential Complexes and Incompressibility
离散非线性弹性:微分复数和不可压缩性
基本信息
- 批准号:1162002
- 负责人:
- 金额:$ 21.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-15 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this grant is to lay the foundations of a geometric theory of discrete elasticity using techniques from differential geometry, algebraic topology, and discrete exterior calculus. This mathematical framework will be critical in building new numerical methods that are free of spurious numerical artifacts, e.g. numerical dissipation and volume locking, while mirroring the corresponding continuum models, e.g. they conserve energy and linear and angular momenta. The results of this project have the potential to transformatively change the way discretization is understood and implemented in computational mechanics. In particular, we formulate incompressible elasticity without using Lagrange multipliers; we extremize the elasticity action over the manifold of volume-preserving motions. We introduce a nonlinear elasticity complex that can be used in a rigorous convergence analysis of discrete incompressible nonlinear elasticity.If successful, the proposed research activities will lead to a geometric discrete elasticity theory that will unify all the existing numerical methods, and will make it possible to build new and more robust numerical schemes that mirror the corresponding continuum models in the form of their governing equations, conservation laws, and internal constraints. This interdisciplinary project will fundamentally impact computational mechanics by demonstrating the importance of geometric techniques and the new insights gained in choosing the correct discrete spaces for different discrete fields.
这项补助金的研究目标是奠定基础的几何理论的离散弹性使用技术从微分几何,代数拓扑,和离散外部演算。这个数学框架将是至关重要的,在建立新的数值方法,是免费的虚假的数值工件,例如数值耗散和体积锁定,同时反映相应的连续模型,例如,他们保存能量和线性和角动量。该项目的结果有可能彻底改变离散化在计算力学中的理解和实现方式。特别是,我们制定不可压缩的弹性不使用拉格朗日乘子,我们极值化的体积保持运动的流形上的弹性作用。我们引入了一个非线性弹性复合体,它可以用于离散不可压缩非线性弹性的严格收敛分析。如果成功,所提出的研究活动将导致一个几何离散弹性理论,将统一所有现有的数值方法,并将有可能建立新的和更强大的数值方案,反映相应的连续介质模型在其控制方程的形式,守恒定律和内部约束。 这个跨学科的项目将从根本上影响计算力学,通过展示几何技术的重要性和在为不同的离散领域选择正确的离散空间时获得的新见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arash Yavari其他文献
Safety and Efficacy of Metabolic Modulation With Ninerafaxstat in Patients With Nonobstructive Hypertrophic Cardiomyopathy
尼内拉法司他对非梗阻性肥厚型心肌病患者进行代谢调节的安全性和有效性
- DOI:
10.1016/j.jacc.2024.03.387 - 发表时间:
2024-05-28 - 期刊:
- 影响因子:22.300
- 作者:
Martin S. Maron;Masliza Mahmod;Azlan Helmy Abd Samat;Lubna Choudhury;Daniele Massera;Dermot M.J. Phelan;Sharon Cresci;Matthew W. Martinez;Ahmad Masri;Theodore P. Abraham;Eric Adler;Omar Wever-Pinzon;Sherif F. Nagueh;Gregory D. Lewis;Paul Chamberlin;Jai Patel;Arash Yavari;Hakim-Moulay Dehbi;Rizwan Sarwar;Betty Raman;Hugh Watkins - 通讯作者:
Hugh Watkins
Universal Displacements in Anisotropic Linear Cauchy Elasticity
- DOI:
10.1007/s10659-024-10094-5 - 发表时间:
2024-11-06 - 期刊:
- 影响因子:1.400
- 作者:
Arash Yavari;Dimitris Sfyris - 通讯作者:
Dimitris Sfyris
Investigating the Influence of Crospovidone’s Manufacturer Variability on Dissolution Profiles of Hydrochlorothiazide Tablets
- DOI:
10.1208/s12249-025-03039-1 - 发表时间:
2025-02-04 - 期刊:
- 影响因子:4.000
- 作者:
Arash Yavari;Seyed Kazem Sadjady;Elham Moniri;Ali Nokhodchi;Fatemeh Haghighat Talab - 通讯作者:
Fatemeh Haghighat Talab
Analysis of the rate-dependent coupled thermo-mechanical response of shape memory alloy bars and wires in tension
- DOI:
10.1007/s00161-011-0187-8 - 发表时间:
2011-05-06 - 期刊:
- 影响因子:2.200
- 作者:
Reza Mirzaeifar;Reginald DesRoches;Arash Yavari - 通讯作者:
Arash Yavari
EFFECTS OF NINERAFAXSTAT ON MYOCARDIAL ENERGETICS, EXERCISE CAPACITY, AND CARDIAC FUNCTION IN HEART FAILURE WITH PRESERVED EJECTION FRACTION, TYPE 2 DIABETES AND OBESITY- A PHASE 2A CLINICAL TRIAL
NINERAFAXSTAT 对射血分数保留的心力衰竭、2 型糖尿病和肥胖患者心肌能量代谢、运动能力和心脏功能的影响——一项 2A 期临床试验
- DOI:
10.1016/s0735-1097(25)01648-1 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:22.300
- 作者:
Sarah Birkhoelzer;Clara Portwood;Joana Pelado;Rebecca Mills;Arash Yavari;Jai Patel;Jack Miller;Ferenc Mózes;Stefan Neubauer;Damian Tyler;Ladislav Valkovic;Oliver John Rider - 通讯作者:
Oliver John Rider
Arash Yavari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arash Yavari', 18)}}的其他基金
Nonlinear Thermomechanics of Accretion
吸积的非线性热力学
- 批准号:
1939901 - 财政年份:2020
- 资助金额:
$ 21.39万 - 项目类别:
Standard Grant
Nonlinear Mechanics of Defects in Solids
固体缺陷的非线性力学
- 批准号:
1561578 - 财政年份:2016
- 资助金额:
$ 21.39万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Growing Bodies: A Riemannian Geometric Approach
合作研究:生长体力学:黎曼几何方法
- 批准号:
1130856 - 财政年份:2011
- 资助金额:
$ 21.39万 - 项目类别:
Continuing Grant
EAGER: Structure-Preserving Discretization of Elasticity Using Geometric Ideas
EAGER:使用几何思想实现弹性的结构保持离散化
- 批准号:
1042559 - 财政年份:2010
- 资助金额:
$ 21.39万 - 项目类别:
Standard Grant
相似海外基金
Sensing Cracks in the Earth Using Multiple Scattering and Nonlinear Elasticity
使用多重散射和非线性弹性来感测地球裂缝
- 批准号:
RGPIN-2016-04415 - 财政年份:2022
- 资助金额:
$ 21.39万 - 项目类别:
Discovery Grants Program - Individual
Sensing Cracks in the Earth Using Multiple Scattering and Nonlinear Elasticity
使用多重散射和非线性弹性来感测地球裂缝
- 批准号:
RGPIN-2016-04415 - 财政年份:2021
- 资助金额:
$ 21.39万 - 项目类别:
Discovery Grants Program - Individual
Analysis of `pressure functionals' and associated PDE in nonlinear elasticity.
非线性弹性中“压力泛函”和相关偏微分方程的分析。
- 批准号:
2590972 - 财政年份:2021
- 资助金额:
$ 21.39万 - 项目类别:
Studentship
Modeling, Analysis, and Computation in Nonlinear Elasticity
非线性弹性建模、分析和计算
- 批准号:
2006586 - 财政年份:2020
- 资助金额:
$ 21.39万 - 项目类别:
Standard Grant
Energy-Driven Instabilities in Nonlinear Elasticity and Other Questions from Materials Science
非线性弹性中能量驱动的不稳定性以及材料科学中的其他问题
- 批准号:
2005538 - 财政年份:2020
- 资助金额:
$ 21.39万 - 项目类别:
Continuing Grant
Sensing Cracks in the Earth Using Multiple Scattering and Nonlinear Elasticity
使用多重散射和非线性弹性来感测地球裂缝
- 批准号:
RGPIN-2016-04415 - 财政年份:2019
- 资助金额:
$ 21.39万 - 项目类别:
Discovery Grants Program - Individual
Sensing Cracks in the Earth Using Multiple Scattering and Nonlinear Elasticity
使用多重散射和非线性弹性来感测地球裂缝
- 批准号:
492958-2016 - 财政年份:2018
- 资助金额:
$ 21.39万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Sensing Cracks in the Earth Using Multiple Scattering and Nonlinear Elasticity
使用多重散射和非线性弹性来感测地球裂缝
- 批准号:
RGPIN-2016-04415 - 财政年份:2018
- 资助金额:
$ 21.39万 - 项目类别:
Discovery Grants Program - Individual
Seismology- and Geodesy-Based Inverse Problems Crossing Scales, with Scattering, Anisotropy and Nonlinear Elasticity
基于地震学和大地测量学的跨尺度反问题,具有散射、各向异性和非线性弹性
- 批准号:
1815143 - 财政年份:2018
- 资助金额:
$ 21.39万 - 项目类别:
Standard Grant
Sensing Cracks in the Earth Using Multiple Scattering and Nonlinear Elasticity
使用多重散射和非线性弹性来感测地球裂缝
- 批准号:
492958-2016 - 财政年份:2017
- 资助金额:
$ 21.39万 - 项目类别:
Discovery Grants Program - Accelerator Supplements