CiC: EAGER: Inferring Pattern and Processes of Genome Evolution Through Cloud Computing

CiC:EAGER:通过云计算推断基因组进化的模式和过程

基本信息

  • 批准号:
    1048217
  • 负责人:
  • 金额:
    $ 29.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

The University of Florida is awarded a grant to implement and evaluate the latest methods for identifying the evolutionary history of gene duplications and losses on the Microsoft Azure cloud computing platform, and will use these methods to reconstruct the history of whole genome duplications in plants. One of the greatest challenges in evolutionary biology is to identify genetic mechanisms responsible for adaptive changes and species diversification. The availability of large-scale genomic data sets from many diverse species provides unprecedented opportunities to identify such important genetic changes. Gene duplication plays a key role in gaining new gene functions and, consequently, adaptive innovations. However, in order to link gene duplications with adaptive changes, it is necessary to determine when in evolutionary history the duplications took place. Recently developed model-based methods enable scientists to map the locations of gene duplications and loss events within a species phylogeny. However, these methods are computationally intensive, and consequently, have only been implemented for small data sets. Cloud computing through the Microsoft Azure platform offers the ideal system in which to extend the implementations of these methods to incorporate full genomic data sets from many organisms and to keep pace with the rapid accumulation of new genome sequences. Education and training in computational biology are a major component of this project. Not only will this work motivate new research into modeling gene evolution and enable enormous analyses to identify potential genomic innovations, it also will provide unique opportunities for cross-disciplinary training for a post-doc and graduate student. Furthermore, educational resources on the uses of cloud computing for large-scale bioinformatics analyses will be developed for the classroom and internet, and a workshop on cloud computing for evolutionary analyses will be held in conjunction with a conference of evolutionary biologists.
佛罗里达大学获得一笔拨款,用于在微软Azure云计算平台上实施和评估识别基因重复和丢失进化历史的最新方法,并将利用这些方法重建植物全基因组重复的历史。 进化生物学中最大的挑战之一是确定负责适应性变化和物种多样化的遗传机制。 来自许多不同物种的大规模基因组数据集的可用性为识别此类重要的遗传变化提供了前所未有的机会。 基因复制在获得新的基因功能和适应性创新中起着关键作用。 然而,为了将基因复制与适应性变化联系起来,有必要确定在进化历史中复制发生的时间。 最近开发的基于模型的方法使科学家能够在物种进化中绘制基因复制和丢失事件的位置。然而,这些方法是计算密集型的,并且因此仅针对小数据集实施。通过Microsoft Azure平台的云计算提供了一个理想的系统,可以扩展这些方法的实现,以整合来自许多生物体的完整基因组数据集,并跟上新基因组序列的快速积累。计算生物学的教育和培训是该项目的一个主要组成部分。 这项工作不仅将激励对基因进化建模的新研究,并使大量的分析能够识别潜在的基因组创新,它还将为博士后和研究生提供跨学科培训的独特机会。此外,还将为课堂和互联网开发关于使用云计算进行大规模生物信息学分析的教育资源,并将结合进化生物学家会议举办关于云计算进行进化分析的讲习班。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Burleigh其他文献

John Burleigh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Burleigh', 18)}}的其他基金

Digitization TCN: Collaborative Research: The Pteridological Collections Consortium: An integrative approach to pteridophyte diversity over the last 420 million years
数字化 TCN:合作研究:蕨类植物收藏联盟:过去 4.2 亿年蕨类植物多样性的综合方法
  • 批准号:
    1802134
  • 财政年份:
    2018
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Building a Comprehensive Evolutionary History of Flagellate Plants
合作研究:建立鞭毛植物的综合进化史
  • 批准号:
    1541506
  • 财政年份:
    2016
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
  • 批准号:
    2348836
  • 财政年份:
    2024
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
  • 批准号:
    2345734
  • 财政年份:
    2024
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了