AF: EAGER: Collaborative Research: Integration of Computational Geometry and Statistical Learning for Modern Data Analysis
AF:EAGER:协作研究:现代数据分析的计算几何与统计学习的集成
基本信息
- 批准号:1049290
- 负责人:
- 金额:$ 9.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data analysis is a fundamental problem in computational science, ubiquitous in a broad range of application fields, from computer graphics to geographics information system, from sensor networks to social networks, and from economics to biological science. Two complementary fields that have driven modern data analysis are computational geometry and statistical learning. The former focuses on detailed and precise models characterizing low-dimensional geometric phenomena. The latter focuses on robust or predictive inference of models given noisy high-dimensional data. This project aims to initiate a dialog between these two fields with geometry being the central theme. A closer interaction between them will benefit and advance both fields, and can potentially fundamentally change the way we view and perform data analysis. Specifically, on one hand, the type of data common in the learning community poses several challenges for traditional computational geometry methods. The shift of focus to these challenges and the modeling of uncertainty central in statistical learning can broaden the scope of computational geometry, and lead to geometric algorithms and models that are more robust to noise and extend to high-dimensional data analysis. On the other hand, computational geometry has developed many elegant structures that contain often detailed and precise information about the underlying domain. Models parameterized using these structures can lead to statistical learning models and algorithms that are richer and more interpretable but remain robust to noise and are predictive. This project is multi-disciplinary in nature, and will involve fields including computational geometry, algorithms, statistics, differential geometry and topology. Education will be integrated in this project.
数据分析是计算科学中的一个基本问题,在从计算机图形学到地理信息系统,从传感器网络到社交网络,从经济学到生物科学的广泛应用领域中无处不在。推动现代数据分析的两个互补领域是计算几何和统计学习。前者侧重于描述低维几何现象的详细而精确的模型。后者侧重于模型的鲁棒性或预测性推理,给出了嘈杂的高维数据。该项目旨在发起这两个领域之间的对话,几何是中心主题。它们之间更密切的互动将使这两个领域受益并取得进展,并可能从根本上改变我们查看和执行数据分析的方式。具体而言,一方面,学习社区中常见的数据类型对传统的计算几何方法提出了一些挑战。将重点转移到这些挑战和统计学习中的不确定性建模可以拓宽计算几何的范围,并导致几何算法和模型对噪声更具鲁棒性,并扩展到高维数据分析。另一方面,计算几何已经发展了许多优雅的结构,包含了关于底层域的详细和精确的信息。使用这些结构参数化的模型可以产生更丰富和更可解释的统计学习模型和算法,但对噪声保持鲁棒性并具有预测性。这个项目是多学科的性质,将涉及领域包括计算几何,算法,统计,微分几何和拓扑。教育将被纳入该项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shayn Mukherjee其他文献
Shayn Mukherjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shayn Mukherjee', 18)}}的其他基金
HDR TRIPODS: Innovations in Data Science: Integrating Stochastic Modeling, Data Representations, and Algorithms
HDR TRIPODS:数据科学的创新:集成随机建模、数据表示和算法
- 批准号:
1934964 - 财政年份:2019
- 资助金额:
$ 9.27万 - 项目类别:
Continuing Grant
Beyond Riemannian Geometry in Inference
超越黎曼几何的推理
- 批准号:
1713012 - 财政年份:2017
- 资助金额:
$ 9.27万 - 项目类别:
Continuing Grant
BIGDATA: Collaborative Research: F: Big Data, It's Not So Big: Exploiting Low-Dimensional Geometry for Learning and Inference
BIGDATA:协作研究:F:大数据,它并不是那么大:利用低维几何进行学习和推理
- 批准号:
1546132 - 财政年份:2015
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Collaborative Research: Topological Methods for Parsing Shapes and Networks and Modeling Variation in Structure and Function
合作研究:解析形状和网络以及建模结构和功能变化的拓扑方法
- 批准号:
1418261 - 财政年份:2014
- 资助金额:
$ 9.27万 - 项目类别:
Continuing Grant
Collaborative Research: Numerical algebra and statistical inference
合作研究:数值代数和统计推断
- 批准号:
1209155 - 财政年份:2012
- 资助金额:
$ 9.27万 - 项目类别:
Continuing Grant
Collaborative Research: Probabilistic models and geometry for high dimensional data
合作研究:高维数据的概率模型和几何
- 批准号:
0732260 - 财政年份:2007
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant