Collaborative Research: Numerical algebra and statistical inference

合作研究:数值代数和统计推断

基本信息

  • 批准号:
    1209155
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

The investigators have two aims in this proposal that fall at the interface of numerical algebra and statistical inference. The first aim is to extend the use of randomized approximation in a variety of dimension reduction methods that rely on numerical linear algebra both supervised and unsupervised as well as linear and nonlinear and develop a statistical bases for these methods in addition to the computational motivation of being applicable to massive data. The other motivation is to extend these statistical methods for dimension reduction to multiway data using numerical multilinear algebra, a recent new development in numerical analysis. These projects will increase interaction between statistical inference and numerical analysis and benefit both fields, providing new perspectives to how we view and perform data analysis.Numerical methods with statistical implications are central to a variety of technologies used by the general population. These technologies include Google's pagerank algorithm, genetic methods used to find genetic variation related to disease, compressing of medical images for storage and treatment, as well as applications in geostatistics. In all the previous cases the fundamental idea is to condense massive data in a useful summary with respect to a desired goal. The two ideas in this proposal are (1) to study how numerical methods that scale to the massive data generated in modern scientific, engineering, and social applications impose statistical assumptions or models on the data, (2) to study more complex interactions or properties of the data than examined in current methods. The motivation behind the first aim is to understand how numerical approximations required for computational scaling as we collect more data impact the information that can be extracted from these data -- for what type of data and applications do certain numerical approximations work well. The motivation behind the second aim is to go beyond the broad category of standard statistical methods take into account the relation between pairs of objects -- two web pages that are linked for Google's pagerank, the correlation between two genes or two loci in genetics applications. The question behind this aim is whether richer sources of information can be extracted by examining the links between three web pages or three loci. The research involved in this aim consists of the development of computationally efficient algebraic methods to extract this information and understanding the statistical models implemented by these methods.
研究人员在这个提议中有两个目标,落在数值代数和统计推理的界面上。第一个目标是扩展随机逼近在各种依赖于有监督和无监督以及线性和非线性数值线性代数的降维方法中的使用,并为这些方法开发一个统计基础,以及适用于大量数据的计算动机。另一个动机是利用数值多元线性代数将这些降维的统计方法扩展到多路数据,这是数值分析中的一个新发展。这些项目将增加统计推断和数值分析之间的互动,并使这两个领域受益,为我们如何看待和执行数据分析提供新的视角。具有统计含义的数值方法是一般人群使用的各种技术的核心。这些技术包括谷歌的网页排名算法、用于发现与疾病相关的遗传变异的遗传方法、压缩医学图像以进行存储和治疗,以及在地质统计学中的应用。在前面的所有案例中,基本思想是将大量数据压缩成一个有用的摘要,以实现期望的目标。本提案中的两个想法是:(1)研究如何将数值方法扩展到现代科学,工程和社会应用中产生的大量数据中,并在数据上施加统计假设或模型;(2)研究比当前方法更复杂的相互作用或数据属性。第一个目标背后的动机是了解当我们收集更多数据时,计算缩放所需的数值近似值如何影响可以从这些数据中提取的信息——对于哪种类型的数据和应用程序,某些数值近似值可以很好地工作。第二个目标背后的动机是超越标准统计方法的广泛范畴,考虑到对象对之间的关系——为b谷歌的网页排名而链接的两个网页,遗传学应用中两个基因或两个位点之间的相关性。这一目标背后的问题是,是否可以通过检查三个网页或三个位点之间的链接来提取更丰富的信息来源。这一目标所涉及的研究包括开发计算效率高的代数方法来提取这些信息,并理解这些方法实现的统计模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shayn Mukherjee其他文献

Shayn Mukherjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shayn Mukherjee', 18)}}的其他基金

HDR TRIPODS: Innovations in Data Science: Integrating Stochastic Modeling, Data Representations, and Algorithms
HDR TRIPODS:数据科学的创新:集成随机建模、数据表示和算法
  • 批准号:
    1934964
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Beyond Riemannian Geometry in Inference
超越黎曼几何的推理
  • 批准号:
    1713012
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
BIGDATA: Collaborative Research: F: Big Data, It's Not So Big: Exploiting Low-Dimensional Geometry for Learning and Inference
BIGDATA:协作研究:F:大数据,它并不是那么大:利用低维几何进行学习和推理
  • 批准号:
    1546132
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Methods for Parsing Shapes and Networks and Modeling Variation in Structure and Function
合作研究:解析形状和网络以及建模结构和功能变化的拓扑方法
  • 批准号:
    1418261
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
AF: EAGER: Collaborative Research: Integration of Computational Geometry and Statistical Learning for Modern Data Analysis
AF:EAGER:协作研究:现代数据分析的计算几何与统计学习的集成
  • 批准号:
    1049290
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Probabilistic models and geometry for high dimensional data
合作研究:高维数据的概率模型和几何
  • 批准号:
    0732260
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
  • 批准号:
    2308090
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319535
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
  • 批准号:
    2244696
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325195
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
  • 批准号:
    2309748
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319536
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
  • 批准号:
    2319142
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308679
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了