Collaborative Research: QSTORM: Switchable Quantum Dots and Adaptive Optics for Super-Resolution Imaging

合作研究:QSTORM:用于超分辨率成像的可切换量子点和自适应光学器件

基本信息

  • 批准号:
    1052733
  • 负责人:
  • 金额:
    $ 28.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-10-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

1052623Winter, Jessica O. (lead PI)Collaborative Research: QSTORM: Switchable Quantum Dots and Adaptive Optics for Super-Resolution ImagingImaging is one of the most important tools in biology. However, observing biological structures and processes in living cells at a resolution below the diffraction limit of light microscopy (~200 nm) remains extremely challenging. Recently, several super-resolution techniques have been introduced to improve the resolution of optical fluorescence, with reported static and dynamic resolutions reaching ~20 nm and ~60 nm, respectively. However, these techniques have yet to be translated to the live cell because of difficulties caused by limitations of fluorescent probes and optical aberrations and light scattering in tissues. Thus researchers must extrapolate information from images of fixed specimens to the living state. This project proposes a new super-resolution imaging technology: QSTORM, which combines user-controlled, switchable quantum dots (QDs) with specialized computer-based algorithms (STORM) and adaptive optics to enhance images. QSTORM will, for the first time, enable imaging in living cells with a resolution superior or comparable to other super-resolution techniques. QSTORM will be evaluated in two models systems: the structure and function of muscle myofilaments in zebrafish and the intracellular transport of vesicles in fruit fly neurons. Normal muscle function depends on the highly organized multi-scale architecture of muscle tissue. QSTORM will enable simultaneous imaging of functioning myofilaments, sarcomeres, and whole muscle cells within the same sample. Similarly, axonal transport of cargo by vesicles is critical to the survival and function of neuronal cells. QSTORM will permit observation of the movements of individual vesicles and the mapping of the underlying cytoskeletal structures that enable this transport. Additionally, the QSTORM team will collaborate with the Museum of Science in Boston to share the results of this research broadly through science education programs, museum demonstrations, and Web-based multimedia projects.Intellectual merit. If fully successful, QSTORM will harness the superior imaging capabilities of quantum dots and adaptive optics for live cell imaging at a super-resolution of less than 50 nm. QSTORM will transform imaging of biological processes, particularly those involving the cytoskeleton and motor proteins. In the models to be studied, QSTORM will permit three-dimensional high resolution imaging of intact live muscle without the destructive processing required for transmission electron microscopy (TEM), thus potentially leading to new hypotheses of how muscle proteins such as actin, myosin, and associated proteins interact. Similarly, QSTORM will permit, for the first time, imaging the movements of neuronal vesicles over complete transport cycles along the entire length of the axon at single nanometer resolution, thus potentially transforming current understanding of the fundamental molecularmechanisms of transport and its regulation.Broader impacts. QSTORM will contribute a powerful new microscopy tool to the scientific community. Not only will this research produce extraordinary images that offer visual insight into fundamental biological processes, but also the broader dissemination of results and educational activities will widely advance subcellular biological research and training. Researchers, students, educators, and public audiences will benefit from the potentially extraordinary visualizations produced by QSTORM. This research will be incorporated into graduate and undergraduate courses in a wide-range of disciplines. Collaboration with the Museum of Science will provide broadly accessible and nationally disseminated educational materials. The proposed QSTORM Web site will present these extraordinary images as part of a lively multimedia story of high-risk, interdisciplinary scientific and technical collaboration in pursuit of a grand challenge.
1052623 Winter,Jessica O. (lead PI)合作研究:QSTORM:可开关量子点和自适应光学用于超分辨率成像成像是生物学中最重要的工具之一。 然而,以低于光学显微镜衍射极限(~200 nm)的分辨率观察活细胞中的生物结构和过程仍然极具挑战性。 近年来,一些超分辨技术被引入以提高光学荧光的分辨率,报道的静态和动态分辨率分别达到~20 nm和~60 nm。 然而,这些技术尚未被翻译到活细胞,因为荧光探针和光学畸变和光散射在组织中的限制所造成的困难。因此,研究人员必须从固定标本的图像中推断出活体状态的信息。该项目提出了一种新的超分辨率成像技术:QSTORM,它将用户控制的可切换量子点(QD)与基于计算机的专用算法(STORM)和自适应光学相结合,以增强图像。QSTORM将首次实现活细胞成像,其分辨率上级或与其他超分辨率技术相当。 QSTORM将在两个模型系统中进行评估:斑马鱼肌肉肌丝的结构和功能以及果蝇神经元中囊泡的细胞内运输。 正常的肌肉功能取决于肌肉组织的高度组织化的多尺度结构。QSTORM将能够同时成像功能肌丝,肌节,和整个肌肉细胞在同一个样本。 类似地,通过囊泡的货物的轴突运输对于神经元细胞的存活和功能至关重要。 QSTORM将允许观察单个囊泡的运动和映射的底层细胞骨架结构,使这种运输。 此外,QSTORM团队还将与波士顿科学博物馆合作,通过科学教育项目、博物馆演示和基于网络的多媒体项目,广泛分享这项研究的成果。 如果完全成功,QSTORM将利用量子点和自适应光学的上级成像能力,以低于50纳米的超分辨率进行活细胞成像。QSTORM将改变生物过程的成像,特别是那些涉及细胞骨架和马达蛋白的过程。在待研究的模型中,QSTORM将允许完整的活肌肉的三维高分辨率成像,而无需透射电子显微镜(TEM)所需的破坏性处理,从而可能导致肌肉蛋白质(如肌动蛋白,肌球蛋白和相关蛋白质)如何相互作用的新假设。类似地,QSTORM将首次允许以单纳米分辨率成像神经元囊泡在完整的运输周期中沿着沿着轴突的整个长度的运动,从而潜在地改变目前对运输及其调节的基本分子机制的理解。 QSTORM将为科学界贡献一个强大的新显微镜工具。这项研究不仅将产生非凡的图像,提供对基本生物过程的视觉洞察,而且更广泛的传播结果和教育活动将广泛推进亚细胞生物学研究和培训。 研究人员,学生,教育工作者和公众将受益于QSTORM产生的潜在非凡的可视化。 这项研究将被纳入研究生和本科课程在广泛的学科。与科学博物馆的合作将提供可广泛获取和在全国传播的教育材料。 拟议中的QSTORM网站将把这些非凡的图像作为一个生动的多媒体故事的一部分,介绍高风险、跨学科的科学和技术合作,以迎接重大挑战。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carol Lynn Alpert其他文献

Carol Lynn Alpert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carol Lynn Alpert', 18)}}的其他基金

Collaborative Research: IDBR Type A: QSTORM-AO - Wavefront-shaping light-sheet microscopy with photoswitchable quantum dots for superresolution imaging in thick tissue
合作研究:IDBR A 型:QSTORM-AO - 具有光控量子点的波前整形光片显微镜,用于厚组织中的超分辨率成像
  • 批准号:
    1555541
  • 财政年份:
    2016
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 28.2万
  • 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
  • 批准号:
    DE240100161
  • 财政年份:
    2024
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
  • 批准号:
    2902365
  • 财政年份:
    2024
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
  • 批准号:
    EP/Y031962/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
  • 批准号:
    EP/Y033124/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
  • 批准号:
    EP/Y033183/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
  • 批准号:
    NE/Y005457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了